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1. ABSTRACT

The study of pointwise ergodic theorems goes back to 1931, when Birkhoff proved his classical pointwise ergodic theorem
for Cesaro averages: for any non-atomic probability space, (X, ), and T : X — X a measure-preserving transformation,
the means
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converge pointwise p-a.e. for each f € L'(X). As is the case with many questions involving pointwise convergence,
controlling the maximal function
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played a key roll in the proof.
It took almost 60 years before the linear averages could be replaced by more complicated polynomial ones; in the late
eighties, Bourgain managed to generalize Birkhoff’s theorem as follows:
For any non-atomic probability space, (X, u), and T : X — X a measure-preserving transformation, the means

1 P
LS 7r 4o
n<t
converge pointwise p-a.e. for each f € LP(X), p > 1. Here, P(n) is any polynomial with integer coefficients.
Although his theorem is very abstract, Bourgain achieved his result through (surprisingly) hard-analytic technique: he
used the analytic number-theoretic circle method of Hardy and Littlewood to prove favorable estimates on the maximal
function
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The key ingredient in his analysis was the replacement of the polynomial multipliers on the torus
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with a more tractable family of “multi-frequency projections.” To control the maximal function governing these projections,
Bourgain developed a beautiful multi-frequency maximal function theory, generalizing the (single-frequency) theory of the
Hardy-Littlewood maximal function.

In this talk we will first review Bourgain’s theorem in the context of pointwise ergodic theory, before discussing two-
parameter generalizations. This is joint work with Mariusz Mirek and Bartosz Trojan.
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