
Taylor’s theorem

Theorem 1. Let f be a function having n+1 continuous derivatives on an interval

I. Let a ∈ I, x ∈ I. Then

(∗n) f(x) = f(a) +
f ′(a)

1!
(x − a) + · · · +

f (n)(a)

n!
(x − a)n + Rn(x, a)

where

(∗∗n) Rn(x, a) =

∫ x

a

(x − t)n

n!
f (n+1)(t)dt.

Proof. For n = 0 this just says that

f(x) = f(a) +

∫ x

a

f ′(t) dt

which is the fundamental theorem of calculus.

For n = 1 we use the formula (∗0) and integrate by parts. That is we apply the
formula

∫ x

a

u(t)v′(t)dt = u(x)v(x) − u(a)v(a) −

∫ x

a

u′(t)v(t)dt

with u(t) = f ′(t), v(t) = t − x.
We then get

∫ x

a

f ′(t) dt =
[

(t − x)f ′(t)
]x

a
−

∫ x

a

(t − x)f ′′(t)dt

= (x − a)f ′(a) +

∫ x

a

(x − t)f ′′(t)dt.

Therefore by (∗0), (∗∗0)

f(x) = f(a) +

∫ x

a

f ′(t) dt

= f(a) + (x − a)f ′(a) +

∫ x

a

(x − t)f ′′(t)dt.

We prove the general case using induction. We show that the formula (∗n)
implies the formula (∗n+1). Suppose we have already proved the formula for a
certain number n ≥ 0. Then we integrate by parts in the remainder term Rn(x, a)
(cf. the above formula with u(t) = f (n+1)(t), v(t) = (x− t)n+1/(n+1)). We obtain

∫ x

a

(x − t)nf (n+1)(t) dt =
[−(x − t)n+1

n + 1
f (n+1)(t)

]x

a
−

∫ x

a

−(x − t)n+1

n + 1
f (n+2)(t)dt

=
(x − a)n+1

n + 1
f (n+1)(a) +

∫ x

a

(x − t)n+1

n + 1
f (n+2)(t)dt.
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Deviding by n! yields

Rn(x, a) =
(x − a)n+1

(n + 1)!
+ Rn+1(x, a).

Assuming the correctness of (∗n), (∗∗)n we may deduce (∗)n+1, (∗∗n+1):

f(x) = f(a) +
f ′(a)

1!
(x − a) + · · · +

fn(a)

n!
(x − a)n + Rn(x, a)

= f(a) +
f ′(a)

1!
(x − a) + · · · +

fn)(a)

n!
(x − a)n +

f (n+1)(a)

(n + 1)!
(x − a)n+1 + Rn+1(x, a). �

with Rn+1(x, a) =
∫ x

a

(x−t)n+1

(n+1)! f (n+2)(t)dt.

We now want to estimate the remainder term Rn.

Theorem 2. Let f be as in Theorem 1 and Rn as in (∗∗n). Let

M = max{|f (n+1)(t)| : t between a and x}.

Then

|Rn(x, a)| ≤
M

(n + 1)!
|x − a|n+1.

Proof. Let I(a, x) be the interval with endpoints a and x

|Rn(x, a)| ≤

∫

I(a,x)

∣

∣

∣

(x − t)n

n)!
f (n+1)(t)

∣

∣

∣
dt

≤

∫ x

a

(x − t)n

n!
Mdt =

M

(n + 1)!
(x − a)n+1.

The last theorem can be strengthened as follows.

Theorem 3. Let f be as in Theorem 1. There is a number γ between a and x such

that

Rn(x, a) =
f (n+1)(γ)

(n + 1)!
(x − a)n+1

Proof. Suppose first a < x.
Let k be the minimum of f (n+1)(t) in the interval [a, x] (as above) and let K be

the maximum of f (n+1) in this interval. Then

k

∫ x

a

(x − t)n

n!
dt ≤ Rn(x, a) ≤ K

∫ x

a

(x − t)n

n!
dt.

Evaluating the integral (as above) and deviding by the integral yields

k

(n + 1)!
≤

Rn(x, a)

(x − a)n+1
≤

K

(n + 1)!
.
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An application of the intermediate value theorem to the function f(n+1)

(n+1)! shows that

there exists a number γ between a and x such that

f (n+1)(γ)

(n + 1)!
=

Rn(x, a)

(x − a)n+1
.

Now modify this argument for the case x ≤ a! �

Alternative expression of the remainder term: The remainder term can also be
expressed by the following formula:

Rn(x, a) =
(x − a)n+1

n!

∫ 1

0

(1 − s)nf (n+1)(a + s(x − a)) ds.

It is obtained from (∗∗)n by making the substitution t = a + s(x − a) (so dt
becomes (x − a)ds and the integral from a to x is changed to an integral over the
interval [0, 1].

In Math 521 I use this form of the remainder term (which eliminates the case
distinction between a ≤ x and x ≥ a in a proof above).

Remark: The conclusions in Theorem 2 and Theorem 3 are true under the as-
sumption that the derivatives up to order n + 1 exist (but f (n+1) is not necessarily
continuous). For this version one cannot longer argue with the integral form of the
remainder. See Rudin’s book for the proof.


