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I. An existence and uniqueness theorem
for differential equations

We are concerned with the initial value problem for a differential equation

(1)
y′(t) = F (t, y(t)),

y(t0) = y0 .

Here (t, y) 7→ F (t, y) is a given continuous function of two variables defined
near a point (t0, y0) ∈ R2. We we wish to find a function t 7→ y(t) for which
the derivative y′(t) equals the value of F (t, y) for y = y(t), and which has
the value y0 at the “initial” time t0.

If we impose an additional condition on F (that is, (4) below) then this
problem has a unique solution in some open interval containing t0. The
following theorem also gives information about a lower bound for the length
of the interval on which this solution exists.

The Picard-Lindelöf Theorem. Let Ω be a nonempty open set in R×R,
let (t0, y0) ∈ Ω and let F : Ω → R be continuous. Let R be a compact
rectangle of the form

R = {(t, y) : |t− t0| ≤ a, |y − y0| ≤ b}

contained in Ω. Suppose that

(2) |F (t, y)| ≤M for (t, y) ∈ R

and let

(3) a∗ := min{a, b/M}.

In addition assume that there is a constant C so that

(4) |F (t, y)− F (t, u)| ≤ C|y − u| whenever (t, y) ∈ R, (t, u) ∈ R.

Then there exists a unique function t 7→ y(t) defined on [t0 − a∗, t0 + a∗]
which satisfies the initial value problem

y′(t) = F (t, y(t)) for |t− t0| ≤ a∗
y(t0) = y0.

Remarks: (i) In the theorem the expression y′(t) makes sense at the end-
points of the interval if we take a one-sided derivative, i.e. y′(t0 + a∗) =

limh→0−
y(t0+a∗+h)−y(t0+a∗)

h and y′(t0 − a∗) = limh→0+
y(t0−a∗+h)−y(t0−a∗)

h .
(ii) The hypothesis (4) says that on R the function F satisfies a Lipschitz-

condition with respect to the variable y. In the case where F is differentiable
1
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with respect to y and the partial derivative ∂F
∂y satisfies the bound

∣∣∂F
∂y

(t, y)
∣∣ ≤ C for (t, y) ∈ R,

the hypothesis (4) is satisfied. This is a consequence of the mean value
theorem applied to y 7→ F (t, y), for any fixed t.

Equivalence of the initial value problem and an integral equa-
tion. Suppose that on [t0 − a∗, t0 + a∗] there is a C1 function y with values
in [y0 − b, y + 0 + b] so that y′(t) = F (t, y(t)) and y(t0) = y0. Then by
integrating (using the fundamental theorem of calculus) we have

y(t) = yt0 +

∫ t

t0

y′(s)ds

and thus

y(t) = y0 +

∫ t

t0

F (s, y(s))ds

for t ∈ [y0 − a∗, y0 + a∗]. Vice versa, if there is a continuous function y
satisfying the displayed integral equation, then y(t0) = y0 and the integrand
s 7→ F (s, y(s)) is continuous. By the fundamental theorem of calculus the
right hand side defines a differentiable function. We differentiate and get
y′(t) = F (t, y(t)).

Proof of the Picard-Lindelöf Theorem. By the previous section we
need to show that there is a unique continuous function on

I := [t0 − a∗, t0 + a∗]

which takes values [y0 − b, y + 0 + b] so that the integral equation

(5) y(t) = y0 +

∫ t

t0

F (s, y(s))ds

has a unique solution.
Define Y as the set of continuous functions t 7→ y(t) which are defined on

[t0 − a∗, t0 + a∗] and which take values in [y0 − b, y0 + b].
Note that for each y ∈ Y the function t 7→ F (t, y(t)) is well defined and a

continuous function on [t0 − a∗, t0 + a∗]. We may therefore define for y ∈ Y
a function Ty by

Ty(t) = y0 +

∫ t

t0

F (s, y(s)) ds .
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If y ∈ Y then Ty is a continuous function on [t0−a∗, t0 +a∗]. We claim that
it is also in Y, i.e. takes values in [y0− b, y+ 0 + b]. To see this we estimate

|Ty(t)− y0| =
∣∣∣ ∫ t

t0

F (s, y(s))ds
∣∣∣

≤ |t0 − t| max
(s,u)∈R

|F (s, u)|

≤M |t− t0| ≤Ma∗ ≤ b

Here we have used the definitions of M and a∗ in the statement of the
theorem. Thus the claim is proved.

We have thus proved that T maps Y into Y. It is our goal to show that
with a suitable metric the map T : Y → Y is a contraction, since this shows
the existence of a unique fixed point of T and hence a unique solution to
(5).

Now what does ”suitable metric” mean? One natural choice would cer-
tainly be the usual maximum’s metric d(g1, g2) = supt∈I |g1(t) − g2(t)| and
it is clear that Y is a closed subspace of C(I), with respect to this metric,
hence a complete metric space. However we will prefer to work with 1

dC(g1, g2) = sup
x∈I

e−2C|t−t0||g1(t)− g2(t)|

which is an equivalent metric on I in the sense that

dC(g1, g2) ≤ d(g1, g2) ≤ e2Ca∗dC(g1, g2)

for all g1, g2. It is immediate that Y with the metric dC is also complete.
We now show that T : Y → Y is a contraction with respect to the metric

dC , indeed we shall verify that

(6) dC(Ty1, T y2) ≤
1

2
dC(y1, y2)

To verify (6) we examine T g2(t)− T g1(t). First observe that

T g2(t)− T g1(t) =

∫ t

t0

[
F (s, g2(s))− F (s, g1(s))] ds.

By the Lipschitz condition (4), we have

|T g2(t)− T g1(t)| ≤

{∫ t
t0
C|g2(s)− g1(s)| ds if t ≥ t0∫ t0

t C|g2(s)− g1(s)| ds if t ≤ t0
.

1If in the conclusion of the theorem we replace a∗ with a smaller number a∗∗ satisfying
a∗∗ < min{a, b/M, 1/C} then it suffices to work with the standard sup-metric d.
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Now we derive an estimate for t ∈ [t0, t0 + a∗] and then a similar estimate
for t ∈ [t0 − a∗, t0]. For t0 ≤ t ≤ t0 + a∗

|T g2(t)− T g1(t)| ≤
∫ t

t0

C|g2(s)− g1(s)| ds

= C

∫ t

t0

e2C(s−t0)e−2C(s−t0)|g2(s)− g1(s)| ds

≤ C
∫ t

t0

e2C(s−t0)dC(g1, g2) ds = CdC(g1, g2)

∫ t

t0

e2C(s−t0) ds

= CdC(g1, g2)
e2C(t−t0) − 1

2C
≤ 1

2
e2C|t−t0|dC(g1, g2) .

Similarly, for t0 − a∗ ≤ t ≤ t0,

|T g2(t)− T g1(t)| ≤
∫ t0

t
C|g2(s)− g1(s)| ds

= C

∫ t0

t
e2C(t0−t)e−2C(t0−s)|g2(s)− g1(s)| ds

≤ C
∫ t0

t
e2C(t0−s)dC(g1, g2) ds

= CdC(g1, g2)
e2C(t0−s) − 1

2C
≤ 1

2
e2C|t0−t|dC(g1, g2) .

Combining both cases we see that

e−2C|t−t0||T g2(t)− T g1(t)| ≤
1

2
dC(g1, g2) whenever |t− t0| ≤ a∗.

Now take the sup over |t − t0| ≤ a∗ on the left hand side and we get
dC(T g1, T g2) ≤ 1

2dC(g1, g2) as claimed in (6). This finishes the proof. �

The method of successive approximation. The proof of the contraction
principle tells us that for given Y0 ∈ Y the sequence Yn defined recursively
by Yn = TYn−1 converges to the unique function satisfying y = Ty which
is the solution to our integral equation (5) and thus the solution of our
initial value problem. It is advisable to choose for the initial function Y0 the
constant function y0 so that the iteration becomes

Y0(t) = y0

Yn(t) = y0 +

∫ t

t0

F (s, Yn−1(s))ds, n = 1, 2, . . .

How to apply the theorem: An example.
Suppose you are given the problem

(1− x2y(x)2)y′(x)− ey(x)2−1 = 0

y(−2) = 1
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which you likely cannot solve explicitly. We want to identify an interval
centered at −2 on which this problem has a unique solution. First we need
to rewrite the differential equation in the form y′(x) = F (x, y(x)), and our
problem is equivalent to

y′(x) =
ey(x)

2−1

1− x2y(x)2

y(−2) = 1

We want to find an interval on which a solution surely exists. Here our

function F is defined by F (x, y) = ey
2−1(1 − x2y2)−1 and x0, y0 are given

by x0 = −2, y0 = 1. Thus we need to pick a rectangle R which is centered
at (−2, 1). In this rectangle we need to have good control on F and ∂F/∂y
and so we certainly have to choose R so small that it contains no points at
which the denominator 1−x2y2 vanishes. The exact choice of the rectangle
is up to you but the properties of F and ∂F/∂y, as required in the theorem,
must be satisfied.

Let’s pick a, b small in the definition of R, say, let’s choose a = 1/2 and
b = 1/4 so that we work in the rectangle

R = {(x, y) : −5/2 ≤ x ≤ −3/2, 3/4 ≤ y ≤ 5/4}.
Notice that then for (x, y) in R we have x2 ≥ 9/4, y2 ≥ 9/16 and therefore
x2y2 ≥ 81/64 so |1 − x2y2| ≥ 81

64 − 1 = 17/64 > 1/4. for (x, y) in R. Thus

we get |(1− x2y2)−1| < 4 and ey
2−1 ≤ e

25
16
−1 = e9/16 < 3 which implies

|F (x, y)| =
∣∣∣ ey

2−1

1− x2y2
∣∣∣ ≤ 3 · 4 = 12, for (x, y) in R.

Thus a legitimate (but non-optimal) choice for M in (1.3) is M = 12.
To verify also the Lipschitz condition we compute

∂F

∂y
(x, y) =

2yey
2−1

1− x2y2
+

ey
2−1

(1− x2y2)2
2yx2.

Observe that that |2y| ≤ 5/2 and |2yx2| ≤ (5/2)3 in R and using the bounds
above we can estimate for all (x, y) in R∣∣∣∂F

∂y
(x, y)

∣∣∣ ≤ ∣∣∣ 2yey
2−1

1− x2y2
∣∣∣+
∣∣∣ ey

2−1

(1− x2y2)2
2yx2

∣∣∣
≤ 5

2
· 12 + 3 · 42 · (5/2)3 = 780.

Hence the Lipschitz condition holds with constant C = 780.
Now if we take

h ≤ min

{
a,

b

M

}
= min {1/2, (1/4)/12} = 1/48,

then by Picard’s theorem we know the problem has exactly one solution in
the interval [−2− h,−2 + h]. So for example if we chose h = .02 we would
deduce that there is a unique solution in the interval [−2.02,−1.98].
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Finally, you may be asked to implement the method of successive approx-
imation, i.e. write down the sequence Yn(x). Set Y0(x) = 1,

Yn(x) = 1 +

∫ x

−2

eYn−1(s)2−1

1− s2(Yn−1(s))2
ds

You can compute Y1(x) = 1 +
∫ x
−2

1
1−s2 ds, but the explicit computation of

Y2 already needs to be done numerically (write out these formulas).

A simple exercise on successive approximation. Consider

y′(t) = γy(t), y(t0) = y0.

Everybody has learned in calculus how to solve this problem. Now de-
termine an explicit formula for the iterations in the method of successive
approximation.

Yn(t) = y0 +

∫ t

t0

γYn−1(s)ds

with Y0(t) = y0.
One verifies that

Y1(t) = y0 +

∫ t

t0

γy0 = y0 + y0γ(t− t0),

Y2(t) = y0 +

∫ t

t0

γ(y0 + y0γ(s− t0))ds = y0

(
1 + γ(t− t0) + γ2

(t− t0)2

2

)
and then proves by induction that

Yn(t) = y0

n∑
k=0

γk(t− t0)k

k!
.

Note that limn→∞ Yn(t) = y0e
γ(x−t0) which is indeed the solution to our

initial value problem.

Another example. Consider the initial value problem

y′(x) = 2 sin(3xy(x))

y(0) = y0
,

for any choice of y0. We use Picard’s theorem to show that this problem
has a unique solution in (−∞,∞). To do this it suffices to show that it has
a unique solution on every interval [−L,L].

This is because we have a unique solution on the interval [−L1, L1] and
a unique solution on the interval [−L2, L2] with L2 > L1 by the uniqueness
part the two solutions have to agree on the smaller interval [−L1, L1].

Now fix L. Define

R = {(x, y) : −L ≤ x ≤ L, y0 − b ≤ y ≤ y0 + b}
for (large) b. Note that the function F defined by F (x, y) = 2 sin(3xy)
satisfies |F (x, y)| ≤ 2 and |∂F/∂y| ≤ 6L for (x, y) in R; in particular observe
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that these bounds are independent of b. By the existence and uniqueness
theorem there is a unique solution for the problem on the interval [−h, h]
where h = min{L, b/2}. Since our bounds are independent of b we may
choose b large, in particular we may choose b larger than 2L, so that h = L
is permissible. Thus we get a unique solution on [−L,L].

II. Possible failure of uniqueness
in the absence of the Lipschitz condition

If in Picard’s theorem one drops the Lipschitz condition then there may
be more than one solution, thus the uniqueness assertion in the theorem is
not longer valid.

We give an example. Here F (t, y) =
√
|y| which is continuous on R2 but

does not satisfy a Lipschitz condition in any rectangle containing (0, 0) in
its interior.

Consider the initial value problem

y′(t) =
√
|y(t)| ,

y(0) = 0 .

Verify that the four functions

Y1(t) = 0 Y2(t) =

{
t2/4 if t > 0

0 if t ≤ 0

Y3(t) =

{
0 if t > 0

−t2/4 if t ≤ 0
Y4(t) =

{
t2/4 if t > 0

−t2/4 if t ≤ 0

are differentiable on R and are solutions of the given initial value problem.

III. A more general existence theorem

We have just seen that the uniqueness part in Picard’s theorem fails
to hold if one drops the Lipschitz assumption in the y-variable, (cf. (4)).
However the existence part remains true. This was shown by Peano and can
be seen as an application of compactness, i.e. the Arzelà-Ascoli theorem.

Peano’s existence theorem. Let Ω be a nonempty open set in R×R, let
(t0, y0) ∈ Ω and let F : Ω→ R be continuous. Let R be a compact rectangle
of the form

R = {(t, y) : |t− t0| ≤ a, |y − y0| ≤ b}

contained in Ω. Suppose that |F (t, y)| ≤ M for (t, y) ∈ R and let a∗ =
min{a, b/M}. Then there exists a function t 7→ y(t) defined on [t0− a∗, t0 +
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a∗] which satisfies the initial value problem

y′(t) = F (t, y(t)) for |t− t0| ≤ a∗
y(t0) = y0.

Proof. 2The strategy is again to prove the existence of a continuous function
y on [t0 − a∗, t0 + a∗] which satisfies the integral equation

y(t) = y0 +

∫ t

t0

F (s, y(s)) ds.

Once we have found this function we observe that the integrand F (s, y(s))
is also a continuous function. Thus the integral represents a differentiable
function (by the fundamental theorem of calculus) and its derivative is
F (t, y(t)). Thus y is also differentiable and we have y′ = F (t, y(t)) for
t ∈ (t0− a∗, t0 + a∗), i.e. y is a solution of the differential equation. Also by
the last display y(t0) = y0 and a solution is found.

We write up the proof of the existence of y only for the interval [t0, t0+a∗]
and leave the notational changes for the interval [t0 − a∗, t0] to the reader.
We will split the proof into five steps.

1. We shall construct functions with polygonal graphs which are candi-
dates to approximate the solutions.
F is uniformly continuous on the compact set R. Let ε > 0 a small

number and let δ = δ(ε) be as in the definition of uniform continuity, i.e.
we have

|F (t, y)− F (t′, y′)| < ε

whenever |(t, y)− (t′, y′)| ≤ δ and (t, y) ∈ R, (t′, y′) ∈ R.
Let

t0 < t1 < · · · < tN = t0 + a∗

be a partition of [t0, t0 + a∗] so that tk+1 − tk <
1
2 min{δ, δ/M} for k =

0, . . . , N − 1.
We now construct a function Y ≡ Yε on [t0, a∗]; this definition depends

on ε, δ and the partition chosen, however keeping this dependence in mind
we will omit the subscript ε in steps 1-4 to avoid cluttered notation.

To define Y ≡ Yε we set Y (t0) = y0. On the first partition interval
[t0, t1] the graph of Y will be a line with initial point (t0, Y (t0)) and slope
F (t, y0) = F (t, Y (t0)). The value of this function at t1 is Y (t1) = Y (t0) +
F (t0, Y (t0))(t1−t0). On the interval (t1, t2] we wish to define Y as the graph
of a line starting at (t1, Y (t1)) with readjusted slope F (t1, Y (t1)). In order
for this construction to work we need to make sure that F (t1, Y (t1)) is still
well defined, meaning that the point (t, Y (t1)) belongs to the rectangle R.

2The proof becomes less technical if one makes the more restrictive assumption that
|F (t, y)| ≤M for all (t, y0) with |t− t0| ≤ a and y ∈ R. We then have a∗ = a and much of
the discussion in step 1 is then superfluous. We will first discuss this special case in class.
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For this we have to check |Y (t1)−y0| ≤ b. Indeed we have that |Y (t1)−y0| =
|F (t0, Y (t0))(t1− t0)| ≤M(t1− t0) ≤Ma∗ ≤ b by definition of a∗. A similar
calculation has to be made at every step.

To be rigorous we formulate the following
Claim. For k = 0, . . . , N there are numbers yk so that

|yk − y0| ≤M(tk − t0) ≤ b and

yk = yk−1 + F (tk−1, yk−1)(tk − tk−1).

For k = 0 the statement is clear. We argue by induction. Above we have
just verified this claim for k = 1, and in a similar way we do the induction
step.

If k ∈ {1, . . . , N−1} we prove the claim for k+1, i.e. the existence of yk+1

with the required properties, under the induction hypothesis, that y1, . . . , yk
have been found. Since by the induction hypothesis |yk − y0| ≤ M(tk − t0)
which is ≤ b the expression F (tk, yk) is well defined and thus yk+1 = yk +
F (tk, yk)(tk+1− tk) is well defined. To check that |yk+1−y0| ≤M(tk+1− t0)
we observe that

|yk+1 − y0| = |yk+1 − yk + yk − y0| ≤ |yk+1 − yk|+ |yk − y0|
= |F (tk, yk)|(tk+1 − tk) + |yk − y0| ≤M(tk+1 − tk) + |yk − y0|
≤M(tk+1 − tk) +M(tk − t0) = M(tk+1 − t0)

where we have in the second to last step used the induction hypothesis. Of
course M(tk+1 − t0) ≤Ma∗ ≤ b. The claim follows by induction.

Now that the claim is verified we can define Y (t) on [t0, a∗] by Y (tk) = yk
and

Y (t) = yk + F (tk, yk)(t− tk), tk < t < tk+1, k = 0, 1, . . . , N − 1.

Observe that this definition is also valid for tk ≤ t ≤ tk+1. The function
Y is continuous, piecewise linear, and the absolute values of all slopes are
bounded by M .

2. The function Y ≡ Yε constructed in part 1 satisfies the inequality

|Y (t)− Y (t′)| ≤M |t− t′| whenever t, t′ are both in [t0, t0 + a∗].

Proof: W.l.o.g t′ < t. If t′, t lie in the same partition interval [tk, tk+1]
then this is immediate since

|Y (t)− Y (t′)| = |F (tk, yk)(t− t′)| ≤M |t− t′|.
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If t′, t lie in different partition intervals, t′ ∈ [tk, tk+1], t ∈ [tl, tl+1] with
k < l, then

|Y (t)− Y (t′)| =
∣∣∣Y (t)− Y (tl) +

∑
k<ν<l

Y (tν+1)− Y (tν) + Y (tk+1)− Y (t′)
∣∣∣

≤ |Y (t)− Y (tl)|+
∑
k<ν<l

|Y (tν+1)− Y (tν)|+ |Y (tk+1)− Y (t′)|

= |F (tl, yl)|(t− tl) +
∑
k<ν<l

|F (tν , yν)|(tν+1 − tν) + |F (tk, yk)|(tk+1 − t′)

≤M(t− tl) +
∑
k<ν<l

M(tν+1 − tν) +M(tk+1 − t′) = M(t− t′) ;

here the middle terms with the sum
∑

k<ν<l are only present when when
k + 1 < l. The claim 2 is proved.

3. Note that if we define g(t) = F (tk−1, Y (tk−1)) if tk−1 ≤ t < t then g is
a step function and Y is differentiable in the open intervals (tk−1, tk) with
derivative Y ′(t) = g(t).

Claim: For t0 ≤ t ≤ t0 + ã we have

Y (t) = y0 +

∫ t

t0

g(s)ds

and ∣∣g(s)− F (s, Y (s))
∣∣ ≤ ε if tk−1 < s < tk .

We first verify the first formula for t = tk. Then

Y (tk)− y0 = Y (tk)− Y (t0) =
k∑
ν=1

[Y (tν)− Y (tν−1)]

=

k∑
ν=1

F (tν−1, Y (tν−1))(tν − tν−1) =

k∑
ν=1

∫ tν

tν−1

g(s)ds =

∫ tk

t0

g(s)ds

Similarly for tk < t < tk+1,

Y (t)− Y (tk) = F (tk, Y (tk))(t− tk) =

∫ t

tk

g(s)ds .

We put the two formulas together and get

Y (t) = Y (tk) +

∫ t

tk

g(s)ds = y0 +

∫ tk

t0

g(s)ds+

∫ t

tk

g(s)ds = y0 +

∫ t

t0

g(s)ds .

For the second assertion let tk−1 < s < tk and observe

|g(s)− F (s, Y (s))| = |F (tk−1, Y (tk−1))− F (s, Y (s))|
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and |Y (tk−1) − Y (s)| ≤ M |tk−1 − s| ≤ M(tk − tk−1) ≤ δ/2 (since the
maximal width of the partition is < δ/2M). Thus the distance of the points
(tk−1, Y (tk−1) and (s, Y (s)) is no more than δ. It follows that

|F (tk−1, Y (tk−1))− F (s, Y (s))| < ε.

4. Claim: For t0 ≤ s ≤ t0 + a∗,∣∣∣Y (t)−
(
y0 +

∫ t

t0

F (s, Y (s))ds
)∣∣∣ ≤ εa∗ .

This follows from part 3, since the right hand side is∣∣∣y0 +

∫ t

t0

g(s)ds−
(
y0 +

∫ t

t0

F (s, Y (s))ds
)∣∣∣

=
∣∣∣ ∫ t

t0

[g(s)− F (s, Y (s))]ds
∣∣∣

and this is estimated by∫
[t0,t]
|g(s)− F (s, Y (s))|ds ≤ ε(t− t0) ≤ εa∗ .

5. So far we have only considered a fixed function Y ≡ Yε. Now consider
a sequence of such functions Yε(n) where ε(n)→ 0 (for example ε(n) = 2−n).
These functions satisfy the properties in part 1-4 with the parameter ε =
ε(n) and with δ = δ(ε(n)).

By part 2 the family of functions Yε(n) is uniformly bounded and uniformly
equicontinuous. Indeed for all n and all t ∈ [t0, t0 + a∗] we have shown

|Yε(n)(t)− Yε(n)(t′)| ≤M |t− t′|

(which implies the uniform equicontinuity) and it follows also that

|Yε(n)(t)| ≤ |Yε(n)(t0)|+ |Yε(n)(t)−Yε(n)(t0)| ≤ |y0|+M |t− t0| ≤ |y0|+Ma∗ .

Thus the Arzelà-Ascoli theorem allows us to choose an increasing sequence
of integers mn such that the subsequence Yε(mn)(t) converges uniformly on
[t0, t0+a∗] to a limit y(t). As a uniform limit of continuous functions y is con-
tinuous on [t0, t0 +a∗]. Now by the uniform continuity of F and the uniform
convergence of Yε(mn) we see3 that F (t, Yε(mn)(t)) converges to F (t, y(t)),

uniformly on [t0, t0 + a∗]. This implies that y0 +
∫ t
t0
F (s, Yε(mn)(s))ds con-

verges to y0 +
∫ t
t0
F (s, y(s))ds. But by part (4) we also have∣∣∣Yε(mn)(t)− (y0 +

∫ t

t0

F (s, Yε(mn)(s)) ds
)∣∣∣ ≤ ε(mn)a∗ → 0 as n→∞.

3Provide the details of this argument.
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Thus we obtain for the limit (as n→∞)

y(t) = y0 +

∫ t

t0

F (s, y(s)) ds

which is the desired integral equation for y. �

Final remark. There are many generalizations of Picard’s and Peano’s
theorems. For example the proofs apply, with only very minor changes, to
systems of equations with an unknown vector valued function (y1(t), . . . , ym(t)),

y′1(t) = F1(t, y1(t), . . . , ym(t))

...

y′m(t) = Fm(t, y1(t), . . . , ym(t))

with initial value conditions

yi(t0) = yi,0, i = 1, . . . ,m.


