
ALL PROBLEMS

Exercise 1. Let K : [a, b]× [a, b] → R be a differentiable function such that

max
[a,b]2

|K(x, t)| ≤ 1,max
[a,b]2

∣∣∣∣∂K∂x (x, t)

∣∣∣∣ ≤ 1.

Consider the space C[a, b] of continuous functions on [a, b] with the sup-norm. For f ∈
C[a, b], define

Af(x) =

∫ b

a

K(x, t)f(t) dt.

(1) Prove that {Af : max[a,b] |f(x)| ≤ 1} is a totally bounded subset of C[a, b].
(2) If in (1) we drop the assumption max[a,b]2

∣∣∂K
∂x

(x, t)
∣∣ ≤ 1 and keep the other assump-

tions, does {Af : max[a,b] |f(x)| ≤ 1} have to be a totally bounded subset of C[a, b]?

Exercise 2. For a sequence (ak) let sn =
∑n

k=1 ak and σL = 1
L

∑L
n=1 sn. We say that∑∞

k=1 ak is Cesáro summable to S if limL→∞ σL = S.

(1) Prove: sn − σn = (n−1)an+(n−2)an−1+···+a2
n

.
(2) Prove: If

∑∞
k=1 ak is Cesáro summable to S and if limk→∞ kak = 0, then

∑∞
k=1 ak

converges and
∑∞

k=1 ak = S.

Exercise 3. Consider the space C([0, 10]) of continuous functions on [0, 10], and for a given
large number L consider the metric dL(f, g) = maxx∈[0,10] e

−Lx|f(x)− g(x)|.
(1) Argue that C([0, 10]) with the metric dL is a complete metric space.
(2) Show that there is a unique function which is continuous on [0, 10] and satisfies

f(x) = −15 + cos(x)

∫ x

0

ee
tx

f(t) dt

for all x ∈ [0, 10].

Exercise 4. Let
Ω = {(x1, x2) ∈ R2 : 0 < x2 < x2

1 ≤ 1/2}.
Define f : R2 → R by

f(x) = (x2
1 + x2

2)
−b/2| log(x2

1 + x2
2)|−γ.

Determine for which values b > 0, γ ∈ R,
∫
Ω
f(x) dx is finite.

Exercise 5. Suppose fn ∈ L1(R) and the sequence εn of positive real numers satisfies
limn→∞ εn = 0. Define the sets En = {x : |fn(x)| ≥ εn} and assume that

∑
nm(En) < ∞.

Prove that
(1) limn→∞ fn = 0 Lebesgue a.e. on R.
(2) For every δ > 0, there is a set Ω such that m(Ω) < δ and limn→∞ fn = 0 uniformly

on R \ Ω.
1
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Exercise 6. Let E ⊂ R. Suppose g, fn ∈ L1(E), supn ||fn||L1 < ∞ and limn→∞ fn = 0 in
Lebesgue measure. Prove that

lim
n→∞

∫
E

√
|fng| dx = 0.

Exercise 7. Suppose that on a set E of finite measure, fn → f in measure and gn → g in
measure and f is finite a.e.. Prove that fngn → fg in measure on E.

Hint: Can you prove f 2
n → f 2 in measure?

Exercise 8. Let X = {P : R → R|P is a polynomial}. Prove that there does not exist a
norm || · || on X such that (X, || · ||) is a Banach space.

Exercise 9. Suppose gn ∈ S(R2) and limn→∞ ||gn||L2(R2) = 0. Show that there are fn ∈
C2(R2) such that ∆fn = fn + gn and fn satisfies

(1) limn→∞ fn(0, 0) = 0.
(2) limn→∞ ||∂2

x1x2
(fn)||L2(R2) = 0.

Exercise 10. The following distributions u, v on R2 are defined by pairing with Schwartz
functions via

⟨u, ϕ⟩ =
∫ 2

0

ϕ(0, t) dt

⟨v, ϕ⟩ =
∫ 2

0

ϕ(t, 0) dt

Show that the convolution u∗v can be identified with a finite, absolutely continuous measure
µ. Find g ∈ L1(R2) such that

∫
ϕ dµ =

∫
ϕg dx for all Schwartz functions ϕ.

Exercise 11. Suppose that E is a measurable set of real numbers with arbitrarily small
periods (that is, there exists a sequence of real numbers pi → 0 such that E + pi = E).
Prove that either E or it’s complement has measure 0.

Exercise 12. Let T ⊂ C be the unit circle. We say that G ⊂ T is a subgroup of T if 1 ∈ G,
ζ1, ζ2 ∈ G implies ζ1ζ2 ∈ G and ζ1 ∈ G implies ζ−1

1 ∈ G.
(1) What are the compact subgroups of T?
(2) Give an example of an infinite subgroup G ⊊ T.
(3) Prove or give a counterexample: there are no measurable subgroups G ⊊ T with

|G| > 0.

Exercise 13. Let {an} be a convergent sequence of complex numbers and let limn→∞ an = L.
Let

cn :=
1

n5

n∑
k=1

k4ak.

Prove that cn converges and determine its limit.
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Exercise 14. Let K : [a, b]× [a, b] → R be a continuous function. Consider the space C[a, b]
of continuous functions on [a, b] with the sup-norm. For f ∈ C[a, b], define

SKf(x) =

∫ b

a

K(x, t)f(t) dt.

(1) Is {SKf : max[a,b] |f(x)| ≤ 1} necessarily a totally bounded subset of C[a, b]?
(2) Let fn be a sequence of continuous functions on [a, b] satisfying

sup
n

sup
x∈[a,b]

|fn(x)| ≤ 1.

Does the sequence SKfn necessarily have a convergent subsequence? Give a proof or
counterexample.

(3) Let Kn be a sequence of continuous functions on [a, b]× [a, b] and assume that

sup
n

max{|Kn(x, y)| : (x, y) ∈ [a, b]× [a, b]} ≤ 1.

Let f ∈ C[a, b]. Does the sequence SKnf necessarily have a convergent subsequence
in C[a, b]? Prove or give a counterexample.

Exercise 15. Show that for α ̸= 0,

1

π

∞∑
n=−∞

α

α2 + n2
=

e2πα + 1

e2πα − 1
.

Hint: Apply the Poisson summation formula to the function f(x) = e−c|x|, for an appropriate
choice of c.

Exercise 16. Prove that there are two functions f1, f2 ∈ C[0, 1] that solve the following
system of equations for all x ∈ [0, 1],

20f1(x) + 3f2(x) = sin(x) +

∫ 1

0

sin(xt) sin(f1(t)) dt

−f1(x) + 10f2(x) = cos(x)−
∫ 1/2

0

cos(xt) cos(f2(t)) dt.

Exercise 17. Let E ⊂ R be a Lebesgue measurable set with finite Lebesgue measure m(E).
Define f(r) = m((E + r) ∩ E). Prove that f is continuous.

Exercise 18. Take X ⊂ Rn, Y ⊂ Rn and let X + Y = {x+ y : x ∈ X, y ∈ Y }.
(1) Assume X is closed and Y is compact. Prove that X + Y is closed.
(2) If Y is closed but not compact, is X + Y closed? Prove or give a counterexample.

Exercise 19. For f ∈ L2, let F (x) =
∫ x

0
f(t) dt.

(1) Prove that ∫ 1

0

(
F (x)

x

)2

dx ≤ 4

∫ 1

0

f 2(x) dx.
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(2) For x ∈ [0, 1]

Af(x) =
1

x
√
1 + | log(x)|

∫ x

0

f(t) dt.

Prove that if fn is a sequence of continuous functions on [0, 1] with supn ||fn||L2([0,1]) ≤
1, then Afn has a subsequence converging in the L2([0, 1]) norm.

Exercise 20. Prove that there does not exist f ∈ L1(R) such that g ∗ f(x) = g(x) for any
g ∈ C0(R) and x ∈ R.

Exercise 21. Let I = [0, 1) and given N ∈ N consider the dyadic intervals Ij,N = [j2−N , (j+
1)2−N) for j ∈ {0, 1, . . . , 2N − 1}. For a function f ∈ L1(I), define a sequence of function
ENf : I → R by

ENf(x) = 2N
∫
Ij,N

f(t) dt for x ∈ Ij,N .

Show that limN→∞ENf(x) = f(x) for a.e. x ∈ I.

Exercise 22. Suppose f, fn are Lebesgue measureable functions on [0, 1] finite a.e.. Show
that fn → f in measure if and only if

lim
n→∞

∫ 1

0

|fn − f |(x)
1 + |fn − f |(x)

dx = 0.

Exercise 23. For f, g ∈ L2[0, 1], let ⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx and set

gn(x) =
n2/3 sin(n/x)

xn+ 1
.

Does there exists α > 0 such that
∞∑
n=1

|⟨f, gn⟩|α < ∞.

hold for every f ∈ L2? Hint: is ||gn||L2 a bounded sequence?

Exercise 24. Prove that there is a distribution u ∈ D′(R) so that its restriction to (0,∞)
is given by

⟨u, f⟩ =
∫ ∞

0

x−2 cos(x−2)f(x) dx

for all f ∈ C∞(R) compactly supported on (0,∞) and ⟨u, f⟩ = 0 for all f ∈ C∞(R)
compactly supported on (−∞, 0).

Exercise 25. Consider the series
∞∑
n=1

1

n
sin

(x
n

)
.

(1) Does it converge uniformly on [0, 1]?
(2) Does it converge uniformly on [0,∞)?

Exercise 26. Can one find a bounded sequence of real numbers xn, n ∈ Z that satisfies

xn = sin(n) + 0.5xn−1 + 0.4 sin(xn+1)

for every n ∈ Z?
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Exercise 27. Suppose S is the set of real-valued functions continuous g on [0, 1] that satisfy
two conditions: ∣∣∣∣∫ 1

0

g(x) dx

∣∣∣∣ ≤ 1

and
|g(x)− g(y)| ≤ |x− y|1/2

for each x, y ∈ [0, 1]. Consider the functional

F (g) =

∫ 1

0

(1− 5x2)g10(x) dx.

Is F bounded on S? Does it acheive it’s maximum on S?

Exercise 28. Let fn : X → R be a sequence of measurable functions on a finite measure
space X, so that |fn(x)| < ∞ for almost every x ∈ X. Show that there is a sequence An of
positive real numbers so that

lim
n→∞

fn(x)

An

= 0

almost everywhere. Hint: Borel-Cantelli.

Exercise 29. Let I = [a, b] and let L2(I) be the space of square-integrable functions on
[a, b] with scalar product ⟨f, g⟩ =

∫ b

a
f(t)g(t) dt. Let p0, p1, . . . be a sequence of real-valued

polynomials pn of degree exactly n such that∫ b

a

pj(x)pk(x) dx =

{
0 j ̸= k

1 j = k
.

Prove that {pn}∞n=0 is a complete orthonormal system.

Exercise 30. For x, y ∈ R, let K(y) = π−1(1 + y2)−1, and for t > 0 let

Ptf(x) =

∫ ∞

−∞
t−1K(t−1y)f(x− y) dy.

(1) Show that if f is continuous and compactly supported, then

lim
t→0+

sup
x∈R

|Ptf(x)− f(x)| = 0.

(2) Let p ≥ 1. For f ∈ Lp(R) denote by Mf the Hardy-Littlewood maximal function of
f . Show that there is a constant C > 0 so that for all f ∈ Lp(R) the inequality

|Ptf(x)| ≤ CMf(x)

holds for every x ∈ R and every t > 0.
(3) If f ∈ L1(R), prove that limt→0+ Ptf(x) = f(x) for almost every x ∈ R.

Exercise 31. On R \ {0} define f(x) = |x|−7/2. Find a tempered distribution h ∈ S ′(R) so
that f = h on R \ {0}.
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Exercise 32. Let X, Y be σ-finite measure space with positive measures dµ, dν respectively
and let K be a measurable function on X × Y . Let u and w be nonnegative measurable
functions on X, Y respectively. Assume that u(x) > 0 and w(y) > 0 a.e.. Suppose 1 < p < ∞∫

X

|K(x, y)|u(x)dµ(x) ≤ Bw(y), ν − a.e.∫
Y

|K(x, y)|w(y)1/(p−1)dν(y) ≤ Au(x)1/(p−1) µ− a.e.

Let T be defined by Tf(x) =
∫
Y
K(x, y)f(y) dν(y). Show that T maps Lp(Y ) to Lp(X)

with operator norm bounded by A1−1/pB1/p.

Exercise 33. Let fn be a sequence of continuous functions on I = [0, 1]. Suppose that for
every x ∈ I there exists an M(x) < ∞ so that |fn(x)| ≤ M(x) for all n ∈ N. Show then
that {fn} is uniformly bounded on some interval, that is there exists M ∈ R and an interval
(a, b) ⊂ I so that |fn(x)| ≤ M for all n ∈ N and x ∈ (a, b).

Exercise 34. Suppose that fn : [0, 1] → R is a sequence of continuous functions each of
which has continuous first and second derivatives on (0, 1). Prove: If

f(x) = lim
n→∞

fn(x) for all x ∈ [0, 1]

and
sup
n≥1

max
0<x<1

|f ′′
n(x)| < ∞,

then f ′ exists and is continuous on (0, 1).

Exercise 35. A function f : U → R defined on a subset U ⊂ Rn is
• locally bounded if for all x ∈ U there exists ε, R > 0 such that |f(y)| ≤ R for all
y ∈ U with |x− y| < ε,

• globally bounded if there exists R > 0 such that |f(y)| ≤ R for all y ∈ U .
Prove: If U ⊂ Rn, then the following are equivalent:

(1) U is compact,
(2) every locally bounded function f : U → R is globally bounded.

Exercise 36. Let K denote the collection of compact subsets of [0, 1]. Define the Hausdorff
metric on K by

d(K1, K2) = sup
x∈K1

inf
y∈K2

|x− y|+ sup
x∈K2

inf
y∈K1

|x− y|.

Prove that (K, d) is a complete metric space.

Exercise 37. Prove that any open set U ⊂ Rn can be expressed as a countable union of
rectangles.

Exercise 38. Suppose that f ∈ L1(R). Consider the function F : R → R defined by

F (x) =

∫
R

f(y)

1 + |xy|
dy.

(1) Prove that F is continuous,
(2) Prove that if f ∈ L2(R) ∩ L1(R), then F ∈ Lp(R) for all p > 2.
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Exercise 39. For any n ≥ 1, show that there exists closed sets A,B ⊂ Rn with |A| = |B| =
0, but |A+B| > 0 (as usual A+B = {a+ b : a ∈ A, b ∈ B}).

Exercise 40. Suppose E ⊂ Rd is a given set and On is the open set On = {x : d(x,E) <
1/n}.

(1) Show that if E is compact, then |E| = limn→∞ |On|.
(2) Is the statement false for E closed and unbounded?
(3) Is the statement false for E open and bounded?

Exercise 41. Let D′(R) denote the space of distributions on R with the weak-∗ topology.
Determine the limit in D′(R) of the sequence of functions in R:

lim
n→∞

√
ne

i
2
nx2

.

Exercise 42. For s > 1
2
, let Hs(Rn) denote the Sobolev space

Hs(Rn) = {f ∈ L2(Rn) :

∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dµ(ξ) < ∞}

(where µ is the Lebesgue measure and f̂ is the Fourier transform of f). Show that if
u, v ∈ Hs(Rn) for s > n/2, the uv ∈ Hs(Rn) and

||uv||Hs(Rn) ≤ C||u||Hs(Rn)||v||Hs(Rn)

for a constant C depending only on s and n.

Exercise 43. Let x1, . . . , xn+1 be pairwise distinct real numbers. Prove that there exists
C > 0 such that: if P : R → R is a polynomial with degree at most n, then

max
x∈[0,1]

|P (x)| ≤ Cmax{|P (x1)|, . . . , |P (xn+1)|}.

Exercise 44. Given a real number x, let {x} denote the fractional part of x. Suppose α is
an irrational number and define T : [0, 1] → [0, 1] by

T (x) = {x+ α}.
Prove: If A ⊂ [0, 1] is measurable and T (A) = A, then |A| ∈ {0, 1}.

Exercise 45. Let {fn}n∈N be a sequence of measurable, real-valued functions on a measure
space X such that fn → f pointwise as n → ∞, where f : X → R, and suppose that for
some constant M > 0, ∫

|fn| dµ ≤ M for all n ∈ N.

(1) Prove that ∫
|f | dµ ≤ M.

(2) Give an example to show that we may have
∫
|fn| dµ = M for every n ∈ N, but∫

|f | dµ < M .
(3) Prove that

lim
n→∞

∫
||fn| − |f | − |fn − f || dµ = 0.
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Exercise 46. Consider the following equation for an unknown function f : [0, 1] → R :

f(x) = g(x) + λ

∫ 1

0

(x− y)2f(y) dy +
1

2
sin(f(x)).

Prove that there exists a number λ0 such that for all λ ∈ [0, λ0) and all continuous functions
g on [0, 1], the equation has a continuous solution.

Exercise 47. Given α ≥ 0 the α-dimensional Hausdorff measure of a set X ⊂ Rn is

Hα(X) = lim inf
r→0

{
∞∑
i=1

rαi : X ⊂
∞⋃
i=1

B(xi, ri), ri < r for all i}

and the Hausdorff dimension is dimH(X) = inf{α ≥ 0 : Hα(X) = 0}.
Prove the following:
(1) If X ⊂ Rn and µ is a finite Borel measure on Rn such that µ(X) > 0 and µ(B(x, r)) ≤

rα for all open balls B(x, r), then dimH(X) ≥ α.
(2) If S1 = {(x, y) ∈ R2 : x2 + y2 = 1} is the unit circle, the dimH(S

1) = 1.

Exercise 48. Let X = [0, 1] with Lebesgue measure and Y = [0, 1] with counting measure.
Give an example of a measurable function f : X × Y → [0,∞) for which Fubini’s theorem
does not apply. (This example shows that the theorem is not valid if the hypothesis of
σ-finiteness is omitted.)

Exercise 49. For s > 1
2

let Hs(Rn) denote the Sobolev space

Hs(Rn) = {f ∈ L2(Rn) :

∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dµ(ξ) < +∞}

(where µ is the Lebesgue measure and f̂ is the Fourier transform of f). Use the Fourier
transform to prove that if u ∈ Hs(Rn) for s > n/2, then u ∈ L∞(Rn), wih the bound

||u||L∞ ≤ C||u||Hs(Rn)

for a constant C depending only on s and n.

Exercise 50. Assume that X is a compact metric space and T : X → X is a continuous
map. Let M1(T ) denote the set of Borel probability measures on X such that T∗µ = µ.
Prove:

(1) M1(T ) ̸= ∅.
(2) If M1(T ) = {µ} consists of a single measure µ, then∫

X

f dµ = lim
N→∞

1

N

N−1∑
n=0

f ◦ T n(x)

for every continuous function f : X → R and point x ∈ X.

Exercise 51. Find the Fourier transform of the following function: f ∈ R2:

f(x) = eixξ0|x− x0|−1.

Exercise 52. Let f ∈ C1([0, 1]). Show that for every ε > 0 there exists a polynomial p such
that

||f − p||∞ + ||f ′ − p′||∞ < ε.
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Exercise 53. Let a = (an)n∈N be a sequence of positive real numbers. Prove that the set

X = {(xn)n∈N ∈ ℓ1(N) : xn ∈ [0, an] for all n ∈ N}

is compact in the ℓ1(N) norm if and only if (an)n∈N ∈ ℓ1(N).

Exercise 54. Let z1, z2, . . . , zn be points on the unit circle T = {|z| = 1} in the complex
plane. Let E ⊂ T satisfy m(E) > 2π(1 − 1

n
). Prove that E can be rotated so that all

the points zk fall into the rotated set, i.e., that there exists α ∈ T such that αzk ∈ E for
k = 1, 2, . . . , n.

Exercise 55. Let f ∈ L1(R) satisfy
∫ b

a
f(x) dx = 0 for any two rational numbers a < b.

Does it follow that f(x) = 0 for almost every x?

Exercise 56. Let σ be a Borel probability measure on [0, 1] satisfying

(1) σ([1/3, 2/3]) = 0;
(2) σ([a, b]) = σ([1− b, 1− a]) for any 0 ≤ a < b ≤ 1;
(3) σ([3a, 3b]) = 2σ([a, b]) for any a, b such that 0 ≤ 3a < 3b ≤ 1.

Complete the following with justification:

(1) Find σ([0, 1/8]).
(2) Calculate the second moment of σ, i.e. the integral∫ 1

0

x2 dσ(x).

Exercise 57. Does the improper integral∫ ∞

2

x sin(ex)

x+ sin(ex)
dx

converge?

Exercise 58. Find the spectrum of the linear operator A in L2(R) defined as

(Af)(x) =

∫ ∞

−∞

f(y)

1 + (x− y)2
dy.

(The spectrum of a linear operator T is the closure of the set of all complex numbers λ such
that the operator T − λI does not have a bounded inverse. Hint: it may be helpful to find
Fourier transform of 1/(1 + x2).)

Exercise 59. Let {xn}∞n=1 be a sequence of elements in a Hilbert space H. Suppose that
xn → x ∈ H weakly in H and that ||xn|| → ||x|| as n → ∞. Show that then ||xn − x|| → 0.
Would the same be true for an arbitrary Banach space in place of H?
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Exercise 60.
(1) Prove or disprove: there exists a distribution u ∈ D′(R) so that its restriction to

(0,∞) is given by

⟨u, f⟩ =
∫ ∞

0

e1/x
2

f(x) dx

for all C∞ which are compactly supported in (0,∞).
(2) Prove or disprove: there exists a distribution u ∈ D′(R) so that its restriction to

(0,∞) is given by

⟨u, f⟩ =
∫ ∞

0

x−2ei/x
2

f(x) dx

for all C∞ which are compactly supported in (0,∞).

Exercise 61. Determine if
∞∑
n=1

cos(k)

k

converges.

Exercise 62. For a Lebesgue measurable subset E of R, denote by χE the indicator function
of E. Let {En : n ∈ N} be a family of Lebesgue measurable subsets of R with finite measure
and let f be a measurable function such that

lim
n→∞

∫
R
|f(x)− χEn| dx = 0.

Prove that f is almost everywhere equal to the indicator function of a measurable set.

Exercise 63. For a Lebesgue measurable subset E of R, denote by χE the indicator function
of E. Let {En : n ∈ N} be a family of Lebesgue measurable subsets of R with finite measure
and let f be a measurable function such that

lim
n→∞

∫
R
|f(x)− χEn| dx = 0.

Prove that f is almost everywhere equal to the indicator function of a measurable set.
You’ve seen this problem before, but I’d invite you to think about a very short proof using

some facts from modes of convergence.

Exercise 64. Let f be a C1 function on [0,∞). Suppose that∫ ∞

0

t|f ′(t)|2 dt < ∞,

lim
T→∞

1

T

∫ T

0

f(t) dt = L.

Show that f(t) → L as t → ∞.

Exercise 65. Let K be a continuous function on [0, 1]× [0, 1] satisfying |K| < 1. Suppose
that g is a continuous function on [0, 1]. Show that there exists a continuous function f on
[0, 1] such that

f(x) = g(x) +

∫ 1

0

f(y)K(x, y) dy.
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Exercise 66. For a, b ≥ 0, let

F (a, b) =

∫ ∞

−∞

dx

x4 + (x− a)4 + (x− b)4
.

For what values of p ∈ (0,∞) is∫ 1

0

∫ 1

0

F (a, b)p da db < ∞?

Hint: try to prove that when a ≤ b, b−3c ≤ F (a, b) ≤ b−3C for positive constant c < C.

Exercise 67. Let f : R → R be a compactly supported function that satisfies the Hölder
condition with exponent β ∈ (0, 1), that is, there exists a constant A < ∞ such that for all
x, y ∈ R, |f(x)− f(y)| ≤ A|x− y|β. Consider the function g defined by

g(x) =

∫ ∞

−∞

f(y)

|x− y|α
dy

where α ∈ (0, β)

(1) Prove that g is a continuous function at 0.
(2) Prove that g is differentiable at 0. (Hint: Try the dominated convergence theorem.)

Exercise 68. A real-valued function f defined on R belongs to the space C1/2(R) if and
only if

sup
x∈R

|f(x)|+ sup
x ̸=y

|f(x)− f(y)|√
|x− y|

< ∞.

Prove that a function f ∈ C1/2(R) if and only if there is a constant C so that for every ε > 0,
there is a bounded function ϕ ∈ C∞(R) such that

sup
x∈R

|f(x)− ϕ(x)| ≤ C
√
ε and sup

x∈R

√
ε|ϕ′(x)| ≤ C.

Exercise 69. Let
∑∞

n=1 an be a convergent series. Let bn ∈ R be an increasing sequence
with limn→∞ bn = ∞. Show that

lim
n→∞

1

bn

n∑
k=1

bkak = 0.

Exercise 70. Let L : [0, 1] → [0, 1] be a function satisfying

|L(x2)− L(x1)| ≤ |x2 − x1|/4, |L(1/2)− 1/2| < 1/4.

Prove that there is a continuous function f : [0, 1] → [0, 1] satisfying

f(x) = (1− x)L(f(x)) + 1/100.

Exercise 71. Show that
∫∞
0

sin(x)

x2/3 dx converges. Determine if∫ ∞

1

sin(x)

x2/3 + sin(x)
dx

converges. Hint: Use Taylor expansion.

Exercise 72. Let E ⊂ [0, 1] be a measurable set with positive Lebesgue measure. Morever,
assume it satisfied the following property: as long as x and y belong to E, we know x+y

2
belongs to E. Prove that E is an interval.



12 ALL PROBLEMS

Exercise 73. Let fn : [0, 1] → R be a sequence of Lebesgue measurable functions such that
fn converges to f a.e. on [0, 1] and such that ||fn||L2[0,1] ≤ 1 for all n. Show that

lim
n→∞

||fn − f ||L1([0,1]) = 0.

Exercise 74. A Hamel basis for a vector space X is a collection H ⊂ X of vectors such
that each x ∈ X can be written uniquely as a finite linear combination of elements in H.
Prove that an infinite dimensional Banach space cannot have a countable Hamel basis. Hint:
Otherwise the Banach space would be first category in itself.

Exercise 75.

(1) Suppose Λ is a distribution on Rn such that supp(Λ) = {0}. If f ∈ C∞
c (Rn) satisfies

f(0) = 0, does it follow that the product fΛ = 0 as a distribution?
(2) Suppose Λ is a distribution on Rn such that supp(Λ) ⊂ K, where K = {x ∈ Rn :

|x| ≤ 1}. If f ∈ C∞
c (R) vanishes on K, does it follow that fΛ = 0 as a distribution?

Exercise 76. Show that ℓ1(N) ⊊ (ℓ∞)∗(N). Hint : Consider the sequence of averages

ϕn(x) =
1

n

n∑
j=1

xj, x = (x1, x2, . . . ) ∈ ℓ∞(N).

Show that ϕn ∈ (ℓ∞(N))∗ and consider its weak-* limit points.

Exercise 77. Let K ⊂ Rd be compact and let µ be a regular Borel measure on K with
µ(K) = 1. Prove that there exists a compact set K0 ⊂ K such that µ(K0) = 1 but µ(H) < 1
for every compact H ⊊ K0.

Exercise 78. Assume that for every x ∈ (0, 1), the function f is absolutely continuous on
[0, x] and bounded variation on [x, 1]. Assume also that f is continuous at 1. Prove that f
is absolutely continuous on [0, 1].

Exercise 79. Let H1([0, 1]) = {f ∈ L2([0, 1]) : f ′ ∈ L2}, where f ′ denotes the distributional
derivative of f . Equip H1 with the norm ||f ||H1 = ||f ||L2 + ||f ′||L2 .

For α ∈ [0, 1], denote ||f ||Cα = supx∈[0,1] |f(x)| + supx ̸=y∈[0,1]
|f(x)−f(y)|

|x−y|α and Cα([0, 1]) =

{f ∈ C([0, 1]) : ||f ||Cα < ∞}.
You may use without proof that H1 and Cα are both Banach spaces.

(1) Prove that H1([0, 1]) ⊂ C1/2([0, 1]).
(2) Prove that the closed unit ball in H1([0, 1]) is compact in Cα([0, 1]) for any α < 1/2.
(3) Is the closed unit ball in H1([0, 1]) compact in C1/2([0, 1])? Prove or give a coun-

terexample.

Exercise 80. Extra 721 Problem:
For f ∈ L2(R+), define Tf(x) =

∫∞
0

f(y)
x+2y

dy. Prove that T is a bounded operator
L2(R+) → L2(R+).
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Exercise 81. Extra 721 Problem:
Let U = {x ∈ Rn : |x| < 1} be the open unit ball in Rn. Let ρ : U → R be a smooth

function such that ρ(0) = 0,∇ρ(0) ̸= 0. Let Σ = {x ∈ U | ρ(x) = 0}. For x ∈ U , let
d(x) = infy∈Σ |x− y|.

(1) For x ∈ V = {x ∈ Rn : |x| ≤ 1/2}, prove that there is a point y ∈ Σ such that
d(x) = |x− y|.

(2) For x ∈ V \ Σ and for any y ∈ Σ such that d(x) = |x − y|, prove that the vector
∇ρ(y) is a scalar multiple of x− y.

(3) Prove that there is an open set W with 0 ∈ W ⊂ V and a C∞ function φ : W → R
such that for all x ∈ W , |φ(x)| = d(x).

AN: This is a pretty old qual problem and part 2 and 3 feel more geometric (i.e. closer
to a 761 problem) than most analysis qual problems now. Both require the implicit/inverse
function theorem, but no theory beyond that.

Exercise 82. Extra 721 Problem:
Consider a differentiable function f : R → R.
(1) Suppose the second derivative of f exists at x0 (but not necessarily anywhere else).

Show that limh→0
f(x0+h)+f(x0−h)−2f(x0)

h2 = f ′′(x0).
(2) Suppose limh→0

f(x0+h)+f(x0−h)−2f(x0)
h2 exists. Recall that we have define f to be a

differentiable function. Is it true that the second derivative of f exists at x0?

Exercise 83. Extra 721 Problem:
Show that there is no sequence {an}n∈N of positive numbers such that

∑
n∈N an|cn| < ∞

if and only if cn is bounded.
Hint: Suppose such a sequence exists and consider the map T : ℓ∞(N) → ℓ1(N) given by

[Tf ]n = anf(n). The set of f such that f(n) = 0 for all but finitely many n is dense in ℓ1

but not in ℓ∞.

Exercise 84. Extra 721 Problem:
Let C([0, 1]) denote the set of continuous functions on [0, 1] equipped with the sup-norm.

Prove that there exists a dense subset of C([0, 1]) consisting of functions are nowhere differ-
entiable.

Exercise 85. Extra 721 Problem:
Let H be a Hilbert space. For a linear space Y ⊂ H, define Y ⊥ = {x ∈ H : (x, y) = 0}.
(1) Prove that if Y is closed, then Y ⊥ is a closed linear subspace of H.
(2) Prove that for any x ∈ H, a minimizing sequence for infy∈Y |x− y| is Cauchy. Con-

clude that we can uniquely write x = x|| + x⊥ with x|| ∈ Y and x⊥ ∈ Y ⊥.
(3) Prove that if f : H → R is bounded and linear, then there exists y ∈ H such that

f(x) = (x, y) for all x.

Exercise 86. Extra 721 Problem:
(1) Construct a set E such that on any interval non-empty finite interval I, 0 < |E∩I| <

|I|.
(2) Prove or give a counterexample: there exists α ∈ (0, 1) and a measureable set E such

that α|I| < |E ∩ I| < |I| for every non-empty finite interval.
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Exercise 87. Extra 721 Problem: Take a continuous function K : [0, 1]2 → R and suppose
g ∈ C([0, 1]). Show that there exists a unique function f ∈ C([0, 1]) such that

f(x) = g(x) +

∫ x

0

f(y)K(x, y) dy.

Exercise 88. Extra 721 Problem: Let f be a continuous real-valued function on R satisfying
|f(x)| ≤ 1

1+x2 . Define F on R by

F (x) =
∞∑

n=−∞

f(x+ n)

(a) Prove that F is continuous and periodic with period 1.
(b) Prove that if G is continuous and periodic with period 1, then∫ 1

0

F (x)G(x) dx =

∫ ∞

−∞
f(x)G(x) dx.

Exercise 89. Extra 721 Problem: For n ≥ 2 an integer, define F (n) to be the function
F (n) = max{k ∈ Z : 2k/k ≤ n}. Does

∑∞
n=2 2

−F (n) converge?

Exercise 90. Extra 721 Problem: For an, bn sequence in ℓ2(N), prove that
∞∑
k=1

∞∑
n=1

anbk
n+ k

≤ C||a||2||b||2.

Exercise 91. Extra 721 Problem: Let xn be a sequence in a Hilbert space H. Suppose that
xn converges weakly to x as N → ∞. Prove that there is a subsequence xnk

such that

N−1

N∑
k=1

xnk

converges in norm to x


