DAY 9 PROBLEMS

Exercise 1. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with finite Lebesgue measure m(E). Define $f(r) = m((E+r) \cap E)$. Prove that f is continuous.

Exercise 2. Let I = [a, b] and let $L^2(I)$ be the space of square-integrable functions on [a, b] with scalar product $\langle f, g \rangle = \int_a^b f(t)\overline{g}(t) dt$. Let p_0, p_1, \ldots be a sequence of real-valued polynomials p_n of degree exactly n such that

$$\int_{a}^{b} p_{j}(x)p_{k}(x) \ dx = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases}$$

Prove that $\{p_n\}_{n=0}^{\infty}$ is a *complete* orthonormal system.

Exercise 3. Let X, Y be σ -finite measure space with positive measures $d\mu, d\nu$ respectively and let K be a measurable function on $X \times Y$. Let u and w be nonnegative measurable functions on X, Y respectively. Assume that u(x) > 0 and w(y) > 0 a.e.. Suppose 1

$$\int_{X} |K(x,y)| u(x) d\mu(x) \le Bw(y), \quad \nu - \text{a.e.}$$
$$\int_{Y} |K(x,y)| w(y)^{1/(p-1)} d\nu(y) \le Au(x)^{1/(p-1)} \quad \mu - \text{a.e.}$$

Let T be defined by $Tf(x) = \int_Y K(x, y) f(y) d\nu(y)$. Show that T maps $L^p(Y)$ to $L^p(X)$ with operator norm bounded by $A^{1-1/p}B^{1/p}$.

Exercise 4. Suppose that $f \in L^1(\mathbb{R})$. Consider the function $F : \mathbb{R} \to \mathbb{R}$ defined by

$$F(x) = \int_{\mathbb{R}} \frac{f(y)}{1 + |xy|} \, dy$$

- (1) Prove that F is continuous,
- (2) Prove that if $f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$, then $F \in L^p(\mathbb{R})$ for all p > 2.

Exercise 5. Let $E \subset [0, 1]$ be a measurable set with positive Lebesgue measure. Morever, assume it satisfied the following property: as long as x and y belong to E, we know $\frac{x+y}{2}$ belongs to E. Prove that E is an interval.

Exercise 6. Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of Lebesgue measurable functions such that f_n converges to f a.e. on [0,1] and such that $||f_n||_{L^2[0,1]} \leq 1$ for all n. Show that

$$\lim_{n \to \infty} ||f_n - f||_{L^1([0,1])} = 0.$$