DAY 7 PROBLEMS

Exercise 1. Prove that there does not exist $f \in L^1(\mathbb{R})$ such that g * f(x) = g(x) for any $g \in C_0(\mathbb{R})$ and $x \in \mathbb{R}$.

Exercise 2. For any $n \ge 1$, show that there exists closed sets $A, B \subset \mathbb{R}^n$ with |A| = |B| = 0, but |A + B| > 0 (as usual $A + B = \{a + b : a \in A, b \in B\}$).

Exercise 3. Given $\alpha \geq 0$ the α -dimensional Hausdorff measure of a set $X \subset \mathbb{R}^n$ is

$$\mathcal{H}^{\alpha}(X) = \liminf_{r \to 0} \{ \sum_{i=1}^{\infty} r_i^{\alpha} : X \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), r_i < r \text{ for all } i \}$$

and the Hausdorff dimension is $\dim_H(X) = \inf\{\alpha \ge 0 : \mathcal{H}^{\alpha}(X) = 0\}.$

Prove the following:

- (1) If $X \subset \mathbb{R}^n$ and μ is a finite Borel measure on \mathbb{R}^n such that $\mu(X) > 0$ and $\mu(B(x,r)) \leq r^{\alpha}$ for all open balls B(x,r), then $\dim_H(X) \geq \alpha$.
- (2) If $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is the unit circle, the $\dim_H(S^1) = 1$.

Exercise 4. Let z_1, z_2, \ldots, z_n be points on the unit circle $\mathbf{T} = \{|z| = 1\}$ in the complex plane. Let $E \subset \mathbf{T}$ satisfy $m(E) > 2\pi(1 - \frac{1}{n})$. Prove that E can be rotated so that all the points z_k fall into the rotated set, i.e., that there exists $\alpha \in \mathbf{T}$ such that $\alpha z_k \in E$ for $k = 1, 2, \ldots, n$.

Exercise 5. Let σ be a Borel probability measure on [0, 1] satisfying

- (1) $\sigma([1/3, 2/3]) = 0;$
- (2) $\sigma([a,b]) = \sigma([1-b, 1-a])$ for any $0 \le a < b \le 1$;
- (3) $\sigma([3a, 3b]) = 2\sigma([a, b])$ for any a, b such that $0 \le 3a < 3b \le 1$.

Complete the following with justification:

- (1) Find $\sigma([0, 1/8])$.
- (2) Calculate the second moment of σ , i.e. the integral

$$\int_0^1 x^2 \, d\sigma(x).$$

Exercise 6. Assume that for every $x \in (0, 1)$, the function f is absolutely continuous on [0, x] and bounded variation on [x, 1]. Assume also that f is continuous at 1. Prove that f is absolutely continuous on [0, 1].