DAY 2 PROBLEMS

Exercise 1. Let $\{a_n\}$ be a convergent sequence of complex numbers and let $\lim_{n\to\infty} a_n = L$. Let

$$c_n := \frac{1}{n^5} \sum_{k=1}^n k^4 a_k.$$

Prove that c_n converges and determine its limit.

Exercise 2. Does the improper integral

$$\int_{2}^{\infty} \frac{x \sin(e^x)}{x + \sin(e^x)} \, dx$$

converge?

Exercise 3. Let f be a C^1 function on $[0, \infty)$. Suppose that

$$\int_0^\infty t |f'(t)|^2 dt < \infty,$$
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) dt = L.$$

Show that $f(t) \to L$ as $t \to \infty$.

Exercise 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a compactly supported function that satisfies the Hölder condition with exponent $\beta \in (0, 1)$, that is, there exists a constant $A < \infty$ such that for all $x, y \in \mathbb{R}, |f(x) - f(y)| \leq A|x - y|^{\beta}$. Consider the function g defined by

$$g(x) = \int_{-\infty}^{\infty} \frac{f(y)}{|x - y|^{\alpha}} \, dy$$

where $\alpha \in (0, \beta)$

(1) Prove that g is a continuous function at 0.

(2) Prove that g is differentiable at 0. (Hint: Try the dominated convergence theorem.)

Exercise 5. Show that $\int_0^\infty \frac{\sin(x)}{x^{2/3}} dx$ converges. Determine if

$$\int_1^\infty \frac{\sin(x)}{x^{2/3} + \sin(x)} \, dx$$

converges. Hint: Use Taylor expansion.