DAY 14 PROBLEMS

Exercise 1. The following distributions u, v on \mathbb{R}^2 are defined by pairing with Schwartz functions via

$$\langle u, \phi \rangle = \int_0^2 \phi(0, t) \, dt$$
$$\langle v, \phi \rangle = \int_0^2 \phi(t, 0) \, dt$$

Show that the convolution u * v can be identified with a finite, absolutely continuous measure μ . Find $g \in L^1(\mathbb{R}^2)$ such that $\int \phi \ d\mu = \int \phi g \ dx$ for all Schwartz functions ϕ .

Exercise 2. Let $\mathcal{D}'(\mathbb{R})$ denote the space of distributions on \mathbb{R} with the weak-* topology. Determine the limit in $\mathcal{D}'(\mathbb{R})$ of the sequence of functions in \mathbb{R} :

$$\lim_{n \to \infty} \sqrt{n} e^{\frac{i}{2}nx^2}$$

Exercise 3. A real-valued function f defined on \mathbb{R} belongs to the space $C^{1/2}(\mathbb{R})$ if and only if

$$\sup_{x \in \mathbb{R}} |f(x)| + \sup_{x \neq y} \frac{|f(x) - f(y)|}{\sqrt{|x - y|}} < \infty.$$

Prove that a function $f \in C^{1/2}(\mathbb{R})$ if and only if there is a constant C so that for every $\varepsilon > 0$, there is a bounded function $\phi \in C^{\infty}(\mathbb{R})$ such that

$$\sup_{x \in \mathbb{R}} |f(x) - \phi(x)| \le C\sqrt{\varepsilon} \text{ and } \sup_{x \in \mathbb{R}} \sqrt{\varepsilon} |\phi'(x)| \le C.$$

Exercise 4. Let $H^1([0,1]) = \{f \in L^2([0,1]) : f' \in L^2\}$, where f' denotes the distributional derivative of f. Equip H^1 with the norm $||f||_{H^1} = ||f||_{L^2} + ||f'||_{L^2}$.

For $\alpha \in [0,1]$, denote $||f||_{C^{\alpha}} = \sup_{x \in [0,1]} |f(x)| + \sup_{x \neq y \in [0,1]} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$ and $C^{\alpha}([0,1]) = \{f \in C([0,1]) : ||f||_{C^{\alpha}} < \infty\}.$

You may use without proof that H^1 and C^{α} are both Banach spaces.

- (1) Prove that $H^1([0,1]) \subset C^{1/2}([0,1])$.
- (2) Prove that the closed unit ball in $H^1([0,1])$ is compact in $C^{\alpha}([0,1])$ for any $\alpha < 1/2$.
- (3) Is the closed unit ball in $H^1([0,1])$ compact in $C^{1/2}([0,1])$? Prove or give a counterexample.

Exercise 5. Extra 721 Problem:

Show that there is no sequence $\{a_n\}_{n\in\mathbb{N}}$ of positive numbers such that $\sum_{n\in\mathbb{N}} a_n |c_n| < \infty$ if and only if c_n is bounded.

Hint: Suppose such a sequence exists and consider the map $T : \ell^{\infty}(\mathbb{N}) \to \ell^{1}(\mathbb{N})$ given by $[Tf]_{n} = a_{n}f(n)$. The set of f such that f(n) = 0 for all but finitely many n is dense in ℓ^{1} but not in ℓ^{∞} .

Exercise 6. Extra 721 Problem:

Let C([0, 1]) denote the set of continuous functions on [0, 1] equipped with the sup-norm. Prove that there exists a dense subset of C([0, 1]) consisting of functions are nowhere differentiable.

Exercise 7. Extra 721 Problem:

Let H be a Hilbert space. For a linear space $Y \subset H$, define $Y^{\perp} = \{x \in H : (x, y) = 0\}$.

- (1) Prove that if Y is closed, then Y^{\perp} is a closed linear subspace of H.
- (2) Prove that for any $x \in H$, a minimizing sequence for $\inf_{y \in Y} |x y|$ is Cauchy. Conclude that we can uniquely write $x = x^{||} + x^{\perp}$ with $x^{||} \in Y$ and $x^{\perp} \in Y^{\perp}$.
- (3) Prove that if $f : H \to \mathbb{R}$ is bounded and linear, then there exists $y \in H$ such that f(x) = (x, y) for all x.