DAY 12 PROBLEMS

Exercise 1. Prove that there is a distribution $u \in \mathcal{D}'(\mathbb{R})$ so that its restriction to $(0, \infty)$ is given by

$$\langle u, f \rangle = \int_0^\infty x^{-2} \cos(x^{-2}) f(x) \ dx$$

for all $f \in C^{\infty}(\mathbb{R})$ compactly supported on $(0,\infty)$ and $\langle u, f \rangle = 0$ for all $f \in C^{\infty}(\mathbb{R})$ compactly supported on $(-\infty, 0)$.

Exercise 2. On $\mathbb{R} \setminus \{0\}$ define $f(x) = |x|^{-7/2}$. Find a tempered distribution $h \in \mathcal{S}'(\mathbb{R})$ so that f = h on $\mathbb{R} \setminus \{0\}$.

Exercise 3.

(1) Prove or disprove: there exists a distribution $u \in \mathcal{D}'(\mathbb{R})$ so that its restriction to $(0,\infty)$ is given by

$$\langle u, f \rangle = \int_0^\infty e^{1/x^2} f(x) \ dx$$

for all C^{∞} which are compactly supported in $(0, \infty)$.

(2) Prove or disprove: there exists a distribution $u \in \mathcal{D}'(\mathbb{R})$ so that its restriction to $(0, \infty)$ is given by

$$\langle u, f \rangle = \int_0^\infty x^{-2} e^{i/x^2} f(x) \, dx$$

for all C^{∞} which are compactly supported in $(0, \infty)$.

Exercise 4.

- (1) Suppose Λ is a distribution on \mathbb{R}^n such that $\operatorname{supp}(\Lambda) = \{0\}$. If $f \in C_c^{\infty}(\mathbb{R}^n)$ satisfies f(0) = 0, does it follow that the product $f\Lambda = 0$ as a distribution?
- (2) Suppose Λ is a distribution on \mathbb{R}^n such that $\operatorname{supp}(\Lambda) \subset K$, where $K = \{x \in \mathbb{R}^n : |x| \leq 1\}$. If $f \in C_c^{\infty}(\mathbb{R})$ vanishes on K, does it follow that $f\Lambda = 0$ as a distribution?

Exercise 5. Extra 721 Problem:

For $f \in L^2(\mathbb{R}^+)$, define $Tf(x) = \int_0^\infty \frac{f(y)}{x+2y} dy$. Prove that T is a bounded operator $L^2(\mathbb{R}^+) \to L^2(\mathbb{R}^+)$.

Exercise 6. Extra 721 Problem:

Let $U = \{x \in \mathbb{R}^n : |x| < 1\}$ be the open unit ball in \mathbb{R}^n . Let $\rho : U \to \mathbb{R}$ be a smooth function such that $\rho(0) = 0, \nabla \rho(0) \neq 0$. Let $\Sigma = \{x \in U \mid \rho(x) = 0\}$. For $x \in U$, let $d(x) = \inf_{y \in \Sigma} |x - y|$.

- (1) For $x \in V = \{x \in \mathbb{R}^n : |x| \le 1/2\}$, prove that there is a point $y \in \Sigma$ such that d(x) = |x y|.
- (2) For $x \in V \setminus \Sigma$ and for any $y \in \Sigma$ such that d(x) = |x y|, prove that the vector $\nabla \rho(y)$ is a scalar multiple of x y.
- (3) Prove that there is an open set W with $0 \in W \subset V$ and a C^{∞} function $\varphi : W \to \mathbb{R}$ such that for all $x \in W$, $|\varphi(x)| = d(x)$.

AN: This is a pretty old qual problem and part 2 and 3 feel more geometric (i.e. closer to a 761 problem) than most analysis qual problems now. Both require the implicit/inverse function theorem, but no theory beyond that.

Exercise 7. Extra 721 Problem:

Consider a differentiable function $f : \mathbb{R} \to \mathbb{R}$.

- (1) Suppose the second derivative of f exists at x₀ (but not necessarily anywhere else). Show that lim_{h→0} f(x₀+h)+f(x₀-h)-2f(x₀)/h² = f''(x₀).
 (2) Suppose lim_{h→0} f(x₀+h)+f(x₀-h)-2f(x₀)/h² exists. Recall that we have define f to be a differentiable function. Is it true that the second derivative of f exists at x₀?