
DAY 9 PROBLEMS AND SOLUTIONS

Exercise 1. Let E ⊂ R be a Lebesgue measurable set with finite Lebesgue measure m(E).
Define f(r) = m((E + r) ∩ E). Prove that f is continuous.

Solution 1. Problems like this come up a lot. There is a trick to them and like every
problem with a trick, they are easiest when you know the trick. The trick is to approximate
the function χE in L1 (or any Lp, p ∈ [1,∞)) with continuous functions fn, prove that
Tfn : r 7→

∫
χE+r(x)fn(x) dx is continuous for all n, then use Young’s inequality to prove

that T is continuous from L1 to C(R), so it sends the convergent sequence fn → χE to a
convergent sequence in C(R), and hence TχE is continuous. If that is clear to you, you can
stop reading here, but I’ll fill in more details and point out a connection to a large collection
of problems in analysis in the next couple paragraphs.

If you want to calculate the measure of (E+r)∩E (or any set you don’t know the measure
of), one thing to try is to write it as the integral of a characteristic function, because we are
often more comfortable manipulating integrals than measures. This is especially powerful
when we want to find the measure of an intersection, because χA∩B = χAχB. Applying this,
we see that

f(r) =

∫
χE+r(x)χE(x) dx =

∫
χE(x− r)χE(x) dx.

We could write this as an integral operator TKf(r) =
∫
K(x, r)f(x) dx, where K(x, r) =

χE(x− r). This problem asks you to prove a special case of a general principle that integral
operators of this form should improve the regularity of the input function. In this case, we
want to prove that TK sends a function in L2(R) (we could choose other values of p ∈ (1,∞)
here) to a function in C(R), and we have the very useful property that K(x, r) = F (r − x)
for a function F ∈ L2(R). We will approach the remainder of the problem in this framework.

With our choice of K and F , we have that TKf(r) = F ∗ f(r), so by Young’s inequality

||TKf ||L∞ ≤ ||F ||L2||f ||L2 .

Therefore TK boundedly maps L2(R) into L∞(R). Now, let’s check that TK sends C0(R) →
C(R). Suppose f ∈ C0(R) and let E denote its support. Fix ε > 0. Since f is continuous
and compactly supported, it is uniformly continuous, so we can find small δ such that if
|r− s| < δ, then |f(r)−f(s)| < ε/(||F ||L2m(E)1/2). Applying this, we see that if |r− s| < δ,
by Hölder’s inequality

|TKf(r)−TKf(s)| <
∫

|F (x)||f(r−x)−f(s−x)| dx < ||F ||L2m(E)1/2 sup
x∈R

|f(r−x)−f(s−x)| < ε

We are almost done now. We know that TK sends C0(R) to C(R) and is bounded L2(R) →
L∞(R). Now we want to prove that it sends L2(R) → C(R). Recall that C0(R) is dense
in L2. We also see that C(R) is closed in L∞. Since the L∞ norm is the sup norm for
continuous functions, a sequence of functions fn in C(R) converging to f in the L∞ norm
is Cauchy in the sup-norm, and hence has a continuous limit. But since limits are unique,
that limit must be f , so f ∈ C(R). Now if we have f ∈ L2(R), then we can take a sequence
fn ∈ C0(R) with fn → f in L2. Then TK(fn) → TKf in L∞ and each TK(fn) is continuous,
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so TKf is continuous as well. We can take K(x, r) = χE(x − r) and f(x) = χE(x) to solve
the original problem.

Exercise 2. Let I = [a, b] and let L2(I) be the space of square-integrable functions on
[a, b] with scalar product ⟨f, g⟩ =

∫ b

a
f(t)g(t) dt. Let p0, p1, . . . be a sequence of real-valued

polynomials pn of degree exactly n such that∫ b

a

pj(x)pk(x) dx =

{
0 j ̸= k

1 j = k
.

Prove that {pn}∞n=0 is a complete orthonormal system.

Solution 2. A complete orthonormal system is an orthonormal system with dense span. It
is immediate from the given definition that {pn}n∈N forms an orthonormal system, it suffices
to show that it is complete. In other words, we need to prove that any f ∈ L2(I) can be
approximated with polynomials. We have a very theorem about polynomial approximation
called the Stone-Weierstrass theorem, which states that any continuous functions on [a, b]
can be approximated by polynomials in the L∞([a, b]) norm. The L2([a, b]) norm is less than√
b− a times the L∞([a, b]) norm, so it follows that any continuous function on [a, b] can be

approximated in the L2([a, b]) norm by polynomials as well. We then see that span((pn)n∈N)
is dense in C([a, b]) equipped with the L2([a, b]) norm.

It remains to prove that C([a, b]) is dense in L2([a, b]). This is a pretty standard result,
but for completeness, I will prove this (or at least, reduce to very results I very much doubt
you will be expected to prove). First, step functions are dense in L2([a, b]), so it suffices to
prove that C([a, b]) is dense in the set of L2([a, b]) step functions. Since step functions are
linear combinations of simple functions, it suffices to prove that C([a, b]) is dense the in the
space of simple functions, in other words, that χE is a limit of continuous functions for any
E ∈ [a, b]. By the regularity of the Lebesgue measure, for any ε > 0, we can find a compact
set K and an open set U such that K ⊂ E ⊂ U and m(U \K) < ε2. By Urysohn’s lemma,
we can find a continuous function f : [a, b] → [0, 1] equal to 1 on K and 0 on U . Then
|f −χE| is at most 1 and is only non-zero on U \K. Thus, ||f −χE||L2([a,b]) < ε. Since ε was
arbitrary, we are done.

Exercise 3. Let X, Y be σ-finite measure space with positive measures dµ, dν respectively
and let K be a measurable function on X × Y . Let u and w be nonnegative measurable
functions on X, Y respectively. Assume that u(x) > 0 and w(y) > 0 a.e.. Suppose 1 < p < ∞∫

X

|K(x, y)|u(x)dµ(x) ≤ Bw(y), ν − a.e.

∫
Y

|K(x, y)|w(y)1/(p−1)dν(y) ≤ Au(x)1/(p−1) µ− a.e.

Let T be defined by Tf(x) =
∫
Y
K(x, y)f(y) dν(y). Show that T maps Lp(Y ) to Lp(X)

with operator norm bounded by A1−1/pB1/p.
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Solution 3. This is a tricky one and requires some functional analysis techniques that are
not commonly discussed. Let’s start with some simplifying assumptions: assume X = Y =
R, µ and ν are simply the Lebesgue measure, and u ≡ w ≡ 1. In hindsight, the first two
assumptions will only provide moral support, as we will never use any properties unique to
specific measure spaces or measures. The final assumption is more significant, but still will
be easy enough to relax when the time comes. With these assumptions, are question is now
to prove that if

∫
R |K(x, y)| dx ≤ B for almost every y and

∫
R |K(x, y)| dy ≤ A for almost

every x, then if Tf(x) =
∫
R K(x, y)f(y) dy satisfies ||Tf ||Lp ≤ A1/p′B1/p||f ||Lp , where p′ is

the Hölder conjugate of p. This feels more comfortable for me and hopefully for you as well.
A useful tool for proving Lp bounds of an integral operator is the principle of duality. For

any 1 < p < ∞, let p′ be the Hölder conjugate of p, that is, 1
p
+ 1

p′
= 1. Then

||Tf ||Lp = sup
g ̸=0∈Lp′

⟨Tf, g⟩
||g||Lp′

= sup
g ̸=0∈Lp′

∫
R×R K(x, y)f(y)g(x) dy dx

||g||Lp′
.

I think you are free to use this without proof, as it is somewhat challenging to prove.
Doing this removes the strange asymmetry of having bounds in the integral of K over each
individual variable, but an operator that only integrates over one variable. Now we see that
it suffices to prove something much more symmetric:∫

R×R
K(x, y)f(y)g(x) dy dx ≤ A1/p′B1/p||f ||Lp ||g||Lp′ .

It is easy to see that we only need to consider the case when K, f , and g are all non-
negative, as the general case would follow from the fact that

∫
R×R K(x, y)f(y)g(x) dy dx ≤∫

R×R |K(x, y)||f(y)|g(x)| dy dx.
Now, we will do something more unusual. Recall that Hölder’s inequality holds for any

measure space and non-negative measure, not just the Lebesgue measure. In particular, it
holds for the measure |K(x, y)| dx dy. Applying this, we see that

∫
R×R

|K(x, y)||f(y)|g(x)| dy dx ≤
(∫

R

∫
R
|K(x, y)||f(y)|p dx dy

)1/p (∫
R

∫
R
|K(x, y)||g(y)|p′ dx dy

)1/p′

For the first integral, we will first integrate in x (since everything is non-negative, we are free
to integrate in whatever order feels appropriate). Using the given bound

∫
|K(x, y)| dx ≤

B, we see that the first integral is bounded above by B1/p||f ||Lp . Similarly, the second
integral is bounded above by A1/p′ ||g||Lp′ . All together,

∫
R×R |K(x, y)||f(y)|g(x)| dy dx ≤

A1/p′B1/p||f ||Lp ||g||Lp′ , as desired.
Now, let’s go back and remove the simplifying assumption. As stated previously, we need

to change nothing to replace R with X and Y and dx, dy with dµ(x), dν(y). We do need to
make some changes to account for u and w. But we start the same is the simplified case,
applying duality to conclude that we need to prove

∫
X×Y

|K(x, y)||f(y)||g(x)| dν(y) dµ(x) ≤
A1/p′B1/p||f ||Lp(dν)||g||Lp′ (dµ). Now, we need the u and w and appear somehow, so we

will simply multiplying inside the integral by 1 = u1/p(x)

w1/p(y)

w1/p(y)

u1/p(x)
. We now want to bound
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X×Y

|K(x, y)||f(y)| u
1/p(x)

w1/p(y)
|g(x)|w

1/p(y)

u1/p(x)
dν(y) dµ(x). Once again, we will use Hölder’s in-

equality to see that∫
X×Y

|K(x, y)||f(y)|u
1/p(x)

w1/p(y)
|g(x)|w

1/p(y)

u1/p(x)
dν(y) dµ(x) ≤

(∫
X×Y

|K(x, y)||f(y)|p u(x)
w(y)

dµ(x) dν(y)

)1/p (∫
X×Y

|K(x, y)||g(x)|p′w
p′/p(y)

up′/p(x)
dµ(x) dν(y)

)1/p′

For the first integral we will, as previously, integrate in x first. The given bound tells us that(∫
X×Y

|K(x, y)||f(y)|p u(x)
w(y)

dµ(x) dν(y)

)1/p

≤
(∫

Y

B|f(y)|pw(y)
w(y)

dy

)1/p

= B1/p||f ||Lp .

Similarly (using the fact that p′/p = 1
p−1

), we see the second integral is bounded by
A1/p′ ||g||Lp′ . Putting this all together, we see that

∫
X×Y

|K(x, y)||f(y)||g(x)| dν(y) dµ(x) ≤
A1/p′B1/p||f ||Lp(dν)||g||Lp′ (dµ), as desired.

Exercise 4. Suppose that f ∈ L1(R). Consider the function F : R → R defined by

F (x) =

∫
R

f(y)

1 + |xy|
dy.

(1) Prove that F is continuous,
(2) Prove that if f ∈ L2(R) ∩ L1(R), then F ∈ Lp(R) for all p > 2.

Solution 4.
(1) We will use dominated convergence to prove that F is continuous. We want to prove

limx→a F (x) = F (a). Since limx→a
f(y)

1+|xy| =
f(y)

1+|ay| and |f(y)|
1+|xy| is uniformly bounded by

the integrable function |f(y)|, the conditions for dominated convergence are satisfied
and hence limx→a F (x) = F (a). Therefore, F is continuous.

(2) Since we have f ∈ L2(R) ∩ L1(R), let’s use Hölder’s inequality on
∫
R

f(y)
1+|xy| dy in two

different ways and see what comes out. First, let’s put an L1 norm on f and an L∞

norm on 1
1+|xy| . This gives that |F (x)| ≤

∫
R

|f(y)|
1+|xy| dy ≤ ||f ||L1(R), since supy

1
1+|xy| = 1.

This bound never blows up, but it won’t be helpful over all of R, because it is constant.
Now, let’s put an L2 norm on f and on 1

1+|xy| . We need to calculate
∫
R

1
(1+|xy|)2 dy,

which might be a little tricky to do exactly, but if we do the substitution u = |x|y,
then we realize that (so long as x ̸= 0),

∫
R

1
(1+|xy|)2 dy = C

|x| , where C =
∫
R

1
(1+u)2

du.

Then putting this for || 1
1+|xy| ||

2
L2
y
, we see that |F (x)| ≤ C||f ||L2√

|x|
. This bound has decay

in x, but blows up when x goes to 0.
So we have two bounds for F , one which constant in x and one which has decay in

x but a singularity at 0. We can combine these to prove
∫
R |F (x)|p dx < ∞ for p > 2

by using the constant bound in a neighborhood [−1, 1] of 0 and the decaying bound
everywhere else. Specifically, since p > 2,

∫
|x|>1

1
|x|p/2 dx < ∞, so∫

R
|F (x)|p dx ≤

∫ 1

−1

|F (x)|p dx+

∫
|x|>1

|F (x)|p dx ≤ 2||f ||pL1 + C||f ||pL2

∫
|x|>1

1

|x|p/2
dx < ∞.

Therefore, F ∈ Lp for all p > 2.
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Exercise 5. Let E ⊂ [0, 1] be a measurable set with positive Lebesgue measure. Morever,
assume it satisfied the following property: as long as x and y belong to E, we know x+y

2
belongs to E. Prove that E is an interval.

Solution 5. Let a = inf E, b = supE. Our aim will be to prove that (a, b) ⊂ E, which
implies E is an interval.

First, let’s prove that E contains a dense subset of (a, b). Let an, bn ∈ E be a sequence
of elements with limn→∞ an = a and limn→∞ bn = b. We will prove that E contains a dense
subset Dn of [an, bn] for any n. By taking the union over Dn, we arrive at a dense subset of
(a, b). By inductively bisecting [an, bn] using the property that if a, b ∈ E, then a+b

2
∈ E, we

see that

Dn =
∞⋃

m=1

{
jan + (2m − j)bn

2m
: j = 0, 1, . . . , 2m} ⊂ E

Now, let’s prove that E contains an interval. This is a consequence of the standard result
that the convolution of two functions in L2 is continuous (see the solution to Exercise 1 for a
careful proof of this). Since E has finite measure, χE/2 is in L2, so χE/2 ∗χE/2 is continuous.
We can check that χE/2 ∗ χE/2 is non-zero, because∫

χE/2 ∗ χE/2(y) dy =

∫ ∫
χE/2(x)χE/2(y − x) dx dy

=

∫
χE/2(x)

∫
χE/2(y − x) dy dx

= |E/2|
∫

χE/2(x) dx

= |E/2|2 > 0.

Then we can find x where χE/2 ∗χE/2(x) > 0, which, since χE/2 ∗χE/2 is continuous, implies
χE/2 ∗ χE/2(y) > 0 for y in some interval I containing x. If χE/2 ∗ χE/2(y) > 0, then there
exists some z such that χE/2(z) > 0 and χE/2(y − z) > 0. It follows that z, y − z ∈ E

2
, so

since E
2
+ E

2
⊂ E, y = z + (y − z) ∈ E. Hence, I ⊂ E, as desired.

The final step is to prove that the longest interval in E has length (a, b). The geometric
idea is if the longest interval I in E has length less than b − a, we can take some point c
outside of I but very close to I, and look at J = I ∪ c+I

2
. Since I ⊂ E and c ∈ E, J ⊂ E.

If c is very close to I, then J will be an interval of length greater than I, contradicting the
maximality of E. It follows that longest interval in E has length (a, b). To do this carefully,
we need to carefully fill in the missing details.

Finally, let m = supI⊂E |I|, where the supremum is over intervals I contained in E, and |I|
denotes the length of I. Since E contains an interval, this is well-defined. We will first prove
that m achieves the supremum, that is, there exists an interval I ⊂ E such that m = |I|.
Otherwise, we have a sequence of intervals Ij with limj→∞ |Ij| = m. Write Ij = (aj, bj). By
compactness, we can restrict to a subsequence so that (as ordered pairs) (ajk , bjk) → (a′, b′),
and since limk→∞ bjk − ajk = m, b′ − a′ = m. Then (as intervals), (a′, b′) =

⋃
k∈∞ Ijk ⊂ E, so

the supremum is achieved by (a′, b′).
Now suppose m < b− a. Let’s derive a contradiction. Let I = (a′, b′) ⊂ E be an interval

of length m. We know either a < a′ or b > b′, since otherwise |I| = m ≥ b− a. Without loss
of generality, assume a < a′. Since E contains a dense subset of (a, b), we can find ε < m

100

such that c = a′ − ε ∈ E. Now consider J = I+c
2

∪ I. We know that a′ + m
100

∈ I and
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a′ + m
100

=
a′−ε+a′+ε+m

50

2
∈ I+c

2
, so since I+c

2
and I are interesecting intervals, J is an interval.

We also now that a′ − ε
4
=

a′−ε+a′+ ε
2

2
∈ I+c

2
, so |J | ≥ m+ ε

4
, contradicting the maximality of

I. Hence, m = (b, a), so E is an interval.

Exercise 6. Let fn : [0, 1] → R be a sequence of Lebesgue measurable functions such that
fn converges to f a.e. on [0, 1] and such that ||fn||L2[0,1] ≤ 1 for all n. Show that

lim
n→∞

||fn − f ||L1([0,1]) = 0.

Solution 6. Fix ε > 0. By Egerov’s theorem, we can find a set A of measure ≤ ε where
fn converges uniformly on Ac. Then choosing n sufficiently large, we can ensure that
supx∈A |fn − f |(x) ≤ ε, so

∫ 1

0
|fn − f |(x) dx ≤ ε. On the other hand, by Hölder’s in-

equality,
∫
x∈Ac |fn − f |(x) dx ≤ m(Ac)1/2||fn − f ||L2 ≤ ε1/2(||fn||L2 + ||f ||L2). Let’s check

that ||f ||L2 ≤ 1. By Fatou’s lemma and the pointwise a.e. convergence,
∫
|f |2(x) dx ≤

lim infn∈N
∫
|fn|2(x) dx ≤ 1, as desired. Then plugging this back in, we see that

∫
x∈Ac |fn −

f |(x) dx ≤ 2ε1/2, and hence for n sufficiently large, ||fn − f ||L1 ≤ ε + 2ε1/2. Taking ε → 0,
we see that limn→∞ ||fn − f ||L1([0,1]) = 0.


