DAY 8 PROBLEMS AND SOLUTIONS

Exercise 1. Suppose f, € L'(R) and the sequence &, of positive real numers satisfies
lim,_ o0 €, = 0. Define the sets E, = {z : |f.(z)| > €,} and assume that ) m(E,) < oco.
Prove that

(1) lim,, ., fn = 0 Lebesgue a.e. on R.
(2) For every § > 0, there is a set € such that m(€) < § and lim,,_, f, = 0 uniformly
on R\ €.

Solution 1.

(1) By Borel-Cantelli, > m(E,) < oo implies that for almost every z, x € E, finitely
often (in other words, m(limsup E,,) = 0). Then for any z and for all n sufficiently
large, ¢ F,, and hence |f,(z)| < &,. Since €, — 0, fn(x) — 0 as well.

(2) Since > m(E,) < oo, we know that imy_,oo > -y m(E,) = 0. Then for any J, we
can find N sufficiently large such that >~ m(E,) <. Set @ = J, -y En. Then
by subadditivity, m(Q2) < 6. For any # € R\ Q, we have f,(z) < ¢, for any n > N.
Therefore, f, converges uniformly to 0 on R\ €.

Exercise 2. Let E C R. Suppose g, f, € L'(E), sup,, ||fa|l; < oo and lim,, s f,, = 0 in
Lebesgue measure. Prove that

lim / Vfng| dz = 0.
n—oo E

Solution 2. We will use three different sources of "smallness" to control [, \/|f.g|(z) dx.
One will be the convergence of f,, in measure. In other words, for any € > 0 and any J > 0,
for n sufficiently large, |f,|(x) > ¢ only occurs on a set of measure < d. The other two will
come from the fixed function g.

I will prove both of the facts, although I would be surprised if you lost points for not doing
so on the qual itself. Since g € L', we know that for any € > 0, we can find a finite measure set
F C Esuchthat [, ,|g|(z) dx <e. Thisis fairly easy to prove: if we define F,, = EN[—x, 2],
then by the monotone convergence theorem, lim, .o [, [9/(y) dy = [} 19l(y) dy, so we can
find some z sufficiently large such that [, " lg|/(y) dy < e. Our final fact is that for any
e > 0, there exists 6 > 0 such that if m(F) < 6, then [, |g|(z) dz < . Suppose this is not
the case. Then there exists ¢ > 0 such that we can find sets F|, Fy,... with m(F,) < 27F
and [, x5, |9/(x) dz > e. We know that limy_,. x5, = 0 outside of a set of measure 0, so by
dominated convergence, limy_,« [, X5, |9/(x) dz = 0, contradicting [, xp,|g|(x) dx > ¢ for
all k.

With these three sources of smallness in hand, we will complete the proof. Let M =
sup,, || fallz1. Fix e > 0 and choose a set F' such that [, |g(x)| dz < &®/(9M) and m(F°) <
c0. Choose ¢ > 0 such that for any G C E with m(G) <0, [, |g(z)| dv < &?/(9M). Finally,

for n sufficiently large, choose sets H,, C F¢ with m(H,) < ¢ such that for all z € £ — H,,,
1
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| fu(@)] < €2/(9m(F€)||g||1). Write

[ VIl do = [ Vil do+ [ Vel des [ VTl de

We will bound all three integrals using Cauchy-Schwarz. The first is bounded above by

</F | fnl(2) dx/F lg|(x) dx) v < (| fallp2e/ (OMN)Y? < /3.

The second is bounded above by

</Hn | ful () dx/n lg|(x) dac)l/2 < (| full 22/ (OM))V? < £/3.

The third is bounded above by

1/2
([ il [ bl de) < (e omEall ol < =73
Hence, |, 1V | fngl(x) de < € for n sufficiently large. Since ¢ was arbitrary, we are done.

Exercise 3. Suppose that on a set E of finite measure, f,, — f in measure and ¢, — ¢ in
measure and f is finite a.e.. Prove that f,g, — fg in measure on E.
Hint: Can you prove f2 — f? in measure?

Solution 3. Suppose we can prove the hint. Then (f, + g.)* — (f + ¢)%, f> — f?, and

(fntgn)®=fi=gn _, (J+9)?=f?=¢°
2 2

g2 — ¢* in measure. It follows that f,g, = = fg in measure,
as desired.

It remains to prove the hint. Fix ¢ > 0. We know that m({z : | f, — f|(z) > £'/?}) — 0, so
m({x : |f, — fl(x)* > €}) — 0. Since ¢ was arbitrary, we therefore know that |f, — f|> — 0
in measure. We can expand this to f2+ f%2 —2f,f — 0. Then if we can prove f,f — f2, we
would have that f2 = f2+ f2—2f.f+2f.f — f?> — f? in measure, since f2+ f2—2f,f — 0
in measure and 2f,f — f? — f? in measure.

So let’s prove that f,f — f? in measure. Fix ¢ > 0 and § > 0, we need to find N € N
such that if n > N, then m({z : |f.f — f?| > €}) < §. Since f is finite a.e., for some K
sufficiently large, |f|(z) < K for all z in a set A such that m(E \ A) < 2. Now, choose N
sufficiently large so that m({z : |f, — f| > &}) < g for all n > N. This is possible because
fn — f in measure. Then for n > N,

m({z : |fuf = f21 > e}) <m(E\A)+m({z € A:|fuf — 7] > €})

5 5
§§+m({x€A:|fn—f|>m)

)
§§+m({x€Ai|fn—f|>%})
< 0.

Since §,& was arbitrary, we know that m({z : |f.f — f?|(x) > €}) — 0 for all € > 0, so
fof — f% in measure, completing the proof.
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Exercise 4. Suppose f, f,, are Lebesgue measureable functions on [0, 1] finite a.e.. Show
that f, — f in measure if and only if

: ! |fn_f|(x) _
Ly T+ 17— A @

Solution 4. Suppose f, — f in measure. Let f,, be a subsequence of f,,. Then it also con-
verges in measure to f and hence has a subsequence f,, converging pointwise almost every-
J

|f"k-j —fl(@) . . 1 |f"kj —fl(z)
where. Note that Ty A0 € [0, 1], so by dominated converge,ce, lim;_, [, oy A0

dx

|fry, —f1(2)
f im0 ﬁ dz = 0. Since every subsequence of { fo % dx} has a subsub-

sequence converging to 0, we see that lim,, . fol % dr = 0.

Now suppose lim,,_, fol % dr = 0. Fix e > 0 and let E, = {z € [0,1] : |f, —

fl(z) > e}. We need to show that m(E,) — 0. Note that for x € E Afn=fl@)

n 1+|f —fl(z)
1 1 |fn—fl(z 1+e |fn—fl(z)
w2 ! e 17 Lhen N T+ f fl(w) de > B, 15z, s0m(E,) < 1 [ T+ fa— (@)
and so since lim,, fo % =0, lim,, oo m(E,) = 0 as well. Since £ > 0 was arbitrary,

it follows that f, — f in measure.

Exercise 5. Let {f,}nen be a sequence of measurable, real-valued functions on a measure
space X such that f, — f pointwise as n — oo, where f : X — R, and suppose that for
some constant M > 0,

/|nt du< M foralln e N.
(1) Prove that
11 du<

(2) Give an example to show that we may have [|f,| du = M for every n € N, but

J1f] dp < M.
(3) Prove that

s [ 11£al = 11 = 15 = £l du =0,

Solution 5.

(1) By Fatou’s lemma, [ |f| dp <liminf [ |f,| du < M.

(2) Take f,(x) = Xjnnt+nm. Then f, — 0 pointwise everywhere and [ |f,|(z) dv = M for
all n, but [0 dx=0< M.

(3) We will use dominated convergence. Since f,, — f pointwise, |f,|—|f|—|fa—f] = 0
pointwise, so as long as the conditions for dominated convergence are satisfied, we
will have lim, o0 [ ||fnl = 1f]—|fn— f|] dp = 0. We just need to find an integrable for
|| ful=|fl—=|fn—f]]. We want that upper bound to be an integrable function, and given
part (1), a reasonable guess is | f| or some multiple of | f|. By rearranging the triangle
inequality, we know |, — f| > | ful — |1, 0 | ful = |f1 = [fu — FIl = fu — F1— |l +f].
By the same reasoning, |fu — f1 — |ful < |l 50 |fu — fI — |fal + |f] < 2|f]. Hence
fal = 11 = [fu — FII < 2/f1, and by part (1), we know [2[f] du < 2M, so the
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conditions for the dominated convergence theorem hold. As discussed previously,
this completes the problem.

Exercise 6. Let f € L'(R) satisfy fab f(x) dz = 0 for any two rational numbers a < b. Does
it follow that f(z) = 0 for almost every x?

Solution 6. It does follow that f(x) = 0 almost everywhere. Suppose otherwise. Without
loss of generality, we may assume there exists a set E of measure € > 0 on which f > 1. By
the outer regularity of the Lebesgue measure, there exists a sequence of open sets V,, D F
such that m(V,,) — m(E). On R, any open set is a countable collection of open intervals. By
lengthening the mth interval in the collection by less than ML,,L, we can ensure each of the open
intervals has rational endpoints. Call the new open set U,, and note that m(U,,) < m(V,,)+ %,
and hence m(U,) — m(FE), and U, D V,, D F for all n. We then see that xp, converges to
XE in measure, and hence xy, converges xpg almost everywhere for some subsequence ny.
We know that fXUnkf(x) dx = 0, so by dominated convergence, [ xgf(z) dz =0 as well,

contradicting our assumption that |f| > 1 on E.

Exercise 7. For a Lebesgue measurable subset E of R, denote by x g the indicator function
of E. Let {E, : n € N} be a family of Lebesgue measurable subsets of R with finite measure
and let f be a measurable function such that

lim [ |f(z) — xg,| de =0.
R

n—o0

Prove that f is almost everywhere equal to the indicator function of a measurable set.
You’ve seen this problem before, but I’d invite you to think about a very short proof using
some facts from modes of convergence.

Solution 7. See the solution in the day 6 solution.



