
DAY 7 PROBLEMS AND SOLUTIONS

Exercise 1. Prove that there does not exist f ∈ L1(R) such that g ∗ f(x) = g(x) for any
g ∈ C0(R) and x ∈ R.

Solution 1. You can solve this easily using Fourier analysis and Riemann-Lebesgue theorem,
but I will present a measure-theoretic proof. The equation g ∗ f = g has a solution if f is
allowed to be a Radon measure C∗

0(R). Let δ0 the dirac mass at 0, so
∫∞
−∞ g(y−x)dδ0x = g(y).

If an L1 function f also had that property, then g ∗ (f − δ0) = 0 for any function g ∈ C0(R).
It follows that ⟨g, f − δ0⟩ = 0 (⟨·, ·⟩ denotes the dual pairing) for any g ∈ C0(R). But then
f − δ0 = 0 ∈ C∗

0(R), which implies that f = δ0. However, δ0 /∈ L1(R), since it is not
absolutely continuous with respect to the Lebesgue measure, so this is a contradiction.

Exercise 2. For any n ≥ 1, show that there exists closed sets A,B ⊂ Rn with |A| = |B| = 0,
but |A+B| > 0 (as usual A+B = {a+ b : a ∈ A, b ∈ B}).

Solution 2. First, let’s do this in R. Let C denote the standard Cantor set. Recall that
we can characterize elements of C by real numbers x ∈ [0, 1] with a ternary representation
containing only 0s and 2s (ternary representations are not unique but we only require one
representation to be of the desired form, for example 1 = 0.222 · · · ∈ C). Then we can char-
acterize elements of C/2 = {x ∈ [0, 1] : 2x ∈ C} as real numbers with ternary representation
containing only 0s and 1s. It is well known that the Cantor set has measure 0, so C/2 has
measure 0 as well. Let A = B = C/2, let’s prove that A + B ⊃ [0, 1]. Take y ∈ [0, 1] and
let 0.y1y2 . . . be a ternary expansion of y, where yi ∈ {0, 1, 2}. We will construct elements
a ∈ A, b ∈ B such that a+ b = y. Let a = 0.a1a2 . . . , where

ai =

{
0 yi = 0

1 yi ̸= 0

and b = 0.b1b2 . . . where

bi =

{
0 yi ̸= 2

1 yi = 2
.

Then ai + bi = yi and ai, bi ∈ {0, 1} for all i, so a ∈ A, b ∈ B, and a + b = y, as desired. It
follows that A+B = [0, 1]. Since |[0, 1]| = 1, we know that |A+B| ≥ 1 > 0.

Now, for Rn. Let A1, B1 ⊂ [0, 1] denote the sets constructed in the past paragraph. Let
A = A1 × [0, 1]n−1, B = B1 × [0, 1]n−1. The Cartesian product of a measure zero set with
any other set has measure zero, so |A| = |B| = 0. Now, let’s prove that A + B ⊃ [0, 1]n.
Take y = (y1, . . . , yn) ∈ [0, 1]n. As previous proven, we can find a1 ∈ A1, b

1 ∈ B1 such that
a1 + b1 = y1. Set a = (a1, 0, . . . , 0) ∈ A and b = (b1, y2, . . . , yn) ∈ B. Then a + b = y, so
y ∈ A+B. Hence, |A+B| ≥ 1 > 0.
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Exercise 3. Given α ≥ 0 the α-dimensional Hausdorff measure of a set X ⊂ Rn is

Hα(X) = lim inf
r→0

{
∞∑
i=1

rαi : X ⊂
∞⋃
i=1

B(xi, ri), ri < r for all i}

and the Hausdorff dimension is dimH(X) = inf{α ≥ 0 : Hα(X) = 0}.
Prove the following:

(1) If X ⊂ Rn and µ is a finite Borel measure on Rn such that µ(X) > 0 and µ(B(x, r)) ≤
rα for all open balls B(x, r), then dimH(X) ≥ α.

(2) If S1 = {(x, y) ∈ R2 : x2 + y2 = 1} is the unit circle, the dimH(S
1) = 1.

Solution 3.

(1) We need to show that Hα(X) > 0. Suppose otherwise. Then for any ε > 0, there
exists a collection of balls B(x1, r1), B(x2, r2), . . . covering X with

∑∞
i=1 r

α
i < ε. Then

µ(X) ≤ µ

(
∞⋃
i=1

B(xi, ri)

)
≤

∞∑
i=1

µ(B(xi, ri)) ≤
∞∑
i=1

rαi < ε.

Since ε > 0 was arbitrary, we conclude that µ(X) = 0, a contradiction. Hence,
Hα(X) > 0, so dimH(X) ≥ α.

(2) First, let’s check that dimH(S
1) ≤ 1. To do so, we need to prove that Hs(S1) = 0

for any s > α. For any r > 0, let xi = (cos(θi), sin(θi)), where θi = 2πir
100

, for
i = 1, 2, . . . , ⌊ 100

2πr
, ⌋. Then for any x ∈ S1, x = (cos(θ), sin(θ)) for some θ ∈ [0, 2π], so

if θi is the closest point to θ, then |x− xi| ≤ | cos(θ)− cos(θi)|+ | sin(θ)− sin(θi)| ≤
2|θ − θi| ≤ 1

100r
. Hence, x ∈ B(xi, r), so S1 ⊂

⋃⌊ 100
2πr

⌋
i=1 B(xi, ri). Moreover,

∑⌊ 100
2πr

i=1 rsi ≤
100
2πr

rs = 100
2π

rs−1. Since s − 1 > 0, limr→0
100
2π

rs−1 = 0, and hence Hs(S1) = 0. Since
s > α was arbitrary, we see that dimH(S

1) ≤ 1.
Now let’s prove that dimH(S

1) ≥ 1. We will use the previous part and ra-
dial integration to accomplish this. Define µ(A) = 1

100

∫
S1 χA(cos(θ), sin(θ)) dθ.

This is a well-defined measure, you can either check this from the definition or
recall that µ is the pushforward of the Lebesgue measure on S1 under the map
θ 7→ (sin(θ), cos(θ)). Also, µ(S1) = 2π > 0, so it remains to check the measure
condition for balls. For a ball B(x, r), if B(x, r) ∩ S1 = ∅, then µ(B(x, r)) =
0 < r. If B(x, r) ∩ S1 ̸= ∅, then µ(B(x, r)) is 1

100
times length of the circular

arc B(x, r) ∩ S1. Let θ1, θ2 be the angles at the endpoints of arc and note that the
length of the circular arc is |θ1 − θ2|. Then µ(B(x, r)) = |θ1−θ2|

100
. On the other hand,

(cos(θ1), sin(θ1)), (cos(θ2), sin(θ2)) ∈ B(x, r) and B(x, r) is a convex set, so it con-
tains a line of length

√
| cos(θ1)− cos(θ2)|2 + | sin(θ1)− sin(θ2)|2 ≥ |θ1−θ2|

2
(one of the

approximations | sin(θ1)−sin(θ2)| ≥ |θ1−θ2|
2

and | cos(θ1)−cos(θ2)| ≥ |θ1−θ2|
2

must hold
for any value of θ1, θ2 ∈ [0, 2π)). The ball then must have radius > |θ1−θ2|

4
, so

µ(B(x, r)) =
|θ1 − θ2|

100
≤ |θ1 − θ2|

4
< r.

Therefore, by the first part, dimH(S
1) ≥ 1, and hence dimH(S

1) = 1.
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Exercise 4. Let z1, z2, . . . , zn be points on the unit circle T = {|z| = 1} in the complex
plane. Let E ⊂ T satisfy m(E) > 2π(1 − 1

n
). Prove that E can be rotated so that all

the points zk fall into the rotated set, i.e., that there exists α ∈ T such that αzk ∈ E for
k = 1, 2, . . . , n.

Solution 4. Let Ak = {α ∈ T : αzk ∈ E}, we want to prove that A1 ∩ · · · ∩ An ̸= ∅. Since
αzk ∈ E if and only if α ∈ z−1

k E, we see that Ak = z−1
k E. Rotations are measure preserving,

so |Ak| = |E| > 2π(1− 1
n
). Then if A1 ∩ · · · ∩An = ∅, we can take the set-difference of both

sides from T to see that (T \ A1) ∪ · · · ∪ (T \ An) = T. Each T \ Ai has measure < 2π
n

, so
|(T \ A1) ∪ · · · ∪ (T \ An)| < 2π = |T|, a contradiction. Therefore, A1 ∩ · · · ∩ An ̸= ∅, so
there exists α ∈ T such that αzk ∈ E for all k.

Exercise 5. Let σ be a Borel probability measure on [0, 1] satisfying
(1) σ([1/3, 2/3]) = 0;
(2) σ([a, b]) = σ([1− b, 1− a]) for any 0 ≤ a < b ≤ 1;
(3) σ([3a, 3b]) = 2σ([a, b]) for any a, b such that 0 ≤ 3a < 3b ≤ 1.

Complete the following with justification:
(1) Find σ([0, 1/8]).
(2) Calculate the second moment of σ, i.e. the integral∫ 1

0

x2 dσ(x).

Solution 5. I think of σ as the "uniform" measure supported on the Cantor set. That is
not explicitly used in my solutions here, but might provide some context for how I came to
the solution below.

(1) Since σ is a probability measure, it has total mass 1. The third property implies
that σ([0, 1/3]) = σ([0,1])

2
= 1

2
, σ([0, 1/9]) = σ([0,1/3])

2
= 1

4
and that σ([1/9, 2/9]) =

σ([1/3,2/3])
2

= 0. It follows that σ([0, 1/8]) = σ([0, 1/9]) + σ([1/9, 1/8]) = 1
4
.

(2) The given properties are listed in terms of the measure σ. For this problem, we need
to turn the properties into properties of the integral

∫ 1

0
f(x) dσ(x). The first property

is immediate, but for the other two, you could formally check this by expressing the
properties as σ = T∗σ for appropriate choices of T , then recalling how to integrate
pushforward measures. I don’t think you would actually need to do this on the qual,
so I will leave that as an exercise.

The properties are as follows:
(a)

∫ 2/3

1/3
f(x) dσ(x) = 0,

(b)
∫ 1

0
f(x) dσ(x) =

∫ 1

0
f(1− x) dx, and

(c)
∫ 1

0
f(x) dσ(x) = 2

∫ 1/3

0
f(3x) dσ(x).

By the first property∫ 1

0

x2 dσ(x) =

∫ 1/3

0

x2 dσ(x) +

∫ 1

2/3

x2 dσ(x).

By the second property,∫ 1

2/3

x2 dσ(x) =

∫ 1/3

0

(1− x)2 dσ(x) =

∫ 1/3

0

1 dσ(x) +

∫ 1/3

0

x2 dσ(x)− 2

∫ 1/3

0

x dσ(x).
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So
∫ 1

0
x2 dσ(x) = 2

∫ 1/3

0
x2 dσ(x)+σ([0, 1/3])−2

∫ 1/3

0
x dσ(x). By the third property,

we see that 2
∫ 1/3

0
x2 dσ(x) = 2

9

∫ 1/3

0
(3x)2 dσ(x) = 1

9

∫ 1

0
x2 dσ(x). Substituting this in,

we see that 8
9

∫ 1

0
x2 dσ(x) = σ([0, 1/3])−2

∫ 1/3

0
x dσ(x). In this way, we have reduced

integrating x2 to integrating x. We will proceed similarly to reduce integrating x
to integrating 1. For brevity, I will not explain each step, but they all follow from
applying the properties above.

We know that

2

∫ 1/3

0

x dσ(x) =
2

3

∫ 1

0

(3x) dσ(x)

=
1

3

∫ 1

0

x dσ(x)

=
1

3

∫ 1/3

0

x dσ(x) +
1

3

∫ 3

2/3

x dσ(x)

=
1

3

∫ 1/3

0

x dσ(x) +
1

3

∫ 1/3

0

(1− x) dσ(x)

=
1

3

∫ 1/3

0

1 dσ(x)

=
1

3
σ([0, 1/3]).

Hence, 8
9

∫ 1

0
x2 dσ(x) = σ([0, 1/3])−1

3
σ([0, 1/3]), and therefore

∫ 1

0
x2 dσ(x) = 3

4
σ([0, 1/3]).

Now σ([0, 1/3]) = 1
2
σ([0, 1]), by the third property, so since σ has mass one, σ([0, 1/3]) =

1
2
. Therefore,

∫ 1

0
x2 dσ(x) = 9

8
· 1
3
= 3

8
.

Exercise 6. Assume that for every x ∈ (0, 1), the function f is absolutely continuous on
[0, x] and bounded variation on [x, 1]. Assume also that f is continuous at 1. Prove that f
is absolutely continuous on [0, 1].

Solution 6. A function f is absolutely continuous if and only if it is BV, continuous, and
maps measure zero sets to measure zero sets. The function f is clearly BV, it is continuous
at 1 by assumption and at any x < 1 because it is absolutely continuous on [0, 1+x

2
]. If

N is a measure zero set, then |f(N)| = limx→1 |f(N ∩ [0, x])| = 0, since f is absolutely
continuous on [0, x], so it maps measure zero subsets of [0, x] to measure zero sets and hence
f(N ∩ [0, x]) = 0 for all x.


