
DAY 5 PROBLEMS AND SOLUTIONS

Exercise 1. Consider the space C([0, 10]) of continuous functions on [0, 10], and for a given
large number L consider the metric dL(f, g) = maxx∈[0,10] e

−Lx|f(x)− g(x)|.
(1) Argue that C([0, 10]) with the metric dL is a complete metric space.
(2) Show that there is a unique function which is continuous on [0, 10] and satisfies

f(x) = −15 + cos(x)

∫ x

0

ee
tx

f(t) dt

for all x ∈ [0, 10].

Solution 1.
(1) Note that d0 is the usual sup metric on C([0, 10]), which is well-known to be com-

plete. Also, dL(f, g) = d0(e
−Lxf, e−Lxg), so dL must be a well-defined metric. Since

d0(f, g)e
−10L ≤ dL(f, g) ≤ d0(f, g), dL and d0 have the same Cauchy sequences and

convergent sequence. Since d0 is complete, dL must be complete as well.
(2) We need to choose an appropriate value of L so that we can apply the contraction

mapping theorem. Let Tf(x) = −15 + cos(x)
∫ x

0
ee

tx
f(t) dt. Then

dL(Tf, Tg) ≤ sup
x∈[0,10]

∫ x

0

ee
tx−L(x−t)e−Lt|f(t)− g(t)| dt.

Suppose we can prove that for any x and functions f, g ∈ C([0, 10]),∫ x

0

ee
tx−L(x−t)e−Lt|f(t)− g(t)| dt < sup

t∈[0,10]
e−Lt|f(t)− g(t)|,

or equivalently, that
∫ x

0
ee

tx−L(x−t) dt < 1 for any x ∈ [0, 10]. If we had this, then
since [0, 10] is compact, supx∈[0,10]

∫ x

0
ee

tx−L(x−t) dt := q < 1, and hence dL(Tf, Tg) ≤
qdL(f, g), and the contraction mapping theorem gives the desired result. We will
then aim to prove that for L sufficiently large,

∫ x

0
ee

tx−L(x−t) dt < 1.
Integrands can be small because the integrand is small or because the domain of

integration is small. We will need to take advantage of both reasons to prove the
desired bound, because if x − t can be arbitrarily close to 0, then we have no hope
of making etx − L(x − t) < 0, as etx will approach 1 while L(x − t) will approach
0. Let ε0 be a small constant, to be determined later. For x > ε0, we can write∫ x

0
ee

tx−L(x−t) dt =
∫ x−ε0
0

ee
tx−L(x−t) dt +

∫ x

x−ε0
ee

tx−L(x−t) dt. The latter integral is
bounded above by ε0e

e100 , so taking ε0 sufficiently small, we can ensure that it is less
than 1/2. This will be our choice for ε0. Now, we will choose L large enough to bound
the first integral. We know that x−t > ε0, so L(x−t) > Lε0. On the other hand etx ≤
e100. If we take L large enough, e100−Lε0 < − log(20), so etx−L(x− t) < − log(20),
and hence ee

tx−L(x−t) < 1/20. Then
∫ x−ε0
0

ee
tx−L(x−t) dt < (x − ε0)/20 < 1/2. Thus,∫ x

0
ee

tx−L(x−t) dt < 1 if x > ε0. If x ≤ ε0, then
∫ x

0
ee

tx−L(x−t) dt ≤ ε0e
e100 < 1/2.

Either way,
∫ x

0
ee

tx−L(x−t) dt < 1, so we are done.
1



2 DAY 5 PROBLEMS AND SOLUTIONS

Exercise 2. Prove that there are two functions f1, f2 ∈ C[0, 1] that solve the following
system of equations for all x ∈ [0, 1],

20f1(x) + 3f2(x) = sin(x) +

∫ 1

0

sin(xt) sin(f1(t)) dt

−f1(x) + 10f2(x) = cos(x)−
∫ 1/2

0

cos(xt) cos(f2(t)) dt.

Solution 2. This is a contraction mapping problem, which means we want to reformulate
it into finding a fixed point of an operator T : M → M for some complete metric space M .

Define A =

[
20 3
−1 10

]
and

T1f(x) = sin(x) +

∫ 1

0

sin(xt) sin(f1(t)) dt, and T2f(x) = cos(x)−
∫ 1/2

0

cos(xt) cos(f(t)) dt.

We want to solve A[f1, f2]
T = [T1f1, T2f2]

T . Since A is invertible (it’s determinant is 203),
this is equivalent to finding a fixed point of the operator T (f1, f2) = A−1[T1f1, T2f2]

T ,
where T : C0(R)2 → C0(R)2 and C0(R)2 is equppied with the sup-norm for each ele-
ment: d((f1, f2), (g1, g2)) = supx∈[0,1] |f1(x) − g1(x)| + supx∈[0,1] |f2(x) − g2(x)|. To prove
that d(T (f1, f2), T (g1, g2)) < d((f1, f2), (g1, g2)), first note that A−1 is itself a contraction.
Since A is linear and invertible, it suffices to prove that ||Ax||2 > c||x||2 for all x ∈ R2 −{0}
and some c > 1 (since R2 is finite dimensional, it would actually suffice to prove that c ≥ 1).
It’s easy enough to see that A’s least eigenvalue is 15−

√
22, so we can take c = 15−

√
22 > 1.

Now we will prove that T̃ (f1, f2) = [T1f1, T2f2]
T is a contraction. For any f1, f2, g1, g2 ∈

C0(R), we have

d(T̃ (f1, f2),T̃ (g1, g2))

≤ sup
x∈[0,1]

∫ 1

0

| sin(xt)|| sin(f1(t))− sin(g1(t))| dt

+ sup
x∈[0,1]

∫ 1/2

0

| cos(xt)|| cos(f2(t))− cos(g2(t))| dt.

Using the bounds | sin(θ)|, | cos(θ)| < 1 and | sin′(θ)|, | cos′(θ)| < 1, we conclude that

sup
x∈[0,1]

∫ 1

0

| sin(xt)|| sin(f1(t))− sin(g1(t))| dt < sup
x∈[0,1]

|f1(x)− g1(x)| and

sup
x∈[0,1]

∫ 1/2

0

| cos(xt)|| cos(f2(t))− cos(g2(t))| dt < sup
x∈[0,1]

|f2(x)− g2(x)|.

Thus, T̃ is a contraction. It follows that T is the composition of contractions and hence is
a contraction as well, so by the contraction mapping theorem, it has a fixed point (f1, f2),
which solves the given equations.

Exercise 3. Can one find a bounded sequence of real numbers xn, n ∈ Z that satisfies

xn = sin(n) + 0.5xn−1 + 0.4 sin(xn+1)

for every n ∈ Z?
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Solution 3. This looks slightly different than other contraction mapping problems, but it
is one. We need a metric to apply the contraction mapping theorem. The simplest metrics
on sequence spaces are given by ℓp norms. In this case, our operator will map the sequence
xn ≡ 0 to the sequence xn = sin(n), so it will not map into an ℓp space other than ℓ∞. We
will proceed using the ℓ∞ metric.

Let ℓ∞(Z) be the space of integer indexed sequences of real numbers such that the norm
||(xn)n∈N||ℓ∞(Z) := supn∈Z |xn| is finite. Define the operator T : ℓ∞ → ℓ∞ by T ((xn)n∈N)m =
sin(m) + 0.5xm−1 + 0.4 sin(xm+1). First, note that this is a well-defined mapping (that is,
T ((xn)n∈N) ∈ ℓ∞(Z) for all (xn)n∈N ∈ ℓ∞(Z)), since

||T ((xn)n∈N)||ℓ∞(Z) ≤ 1.5 + 0.5||(xn)n∈N||ℓ∞(Z) < ∞
To see that it is a contraction, note that

|(T ((xn)n∈N)− T ((yn)n∈N))m| ≤ 0.5|xm−1 − ym−1|+ 0.4| sin(xm+1)− sin(ym+1)|
≤ 0.5|xm−1 − ym−1|+ 0.4|xm+1 − ym+1|
≤ 0.9||x− y||ℓ∞(Z).

Since m was arbitrary, we conclude that ||T ((xn)n∈N) − T ((yn)n∈N)||ℓ∞(Z) ≤ 0.9||(xn)n∈N −
(yn)n∈N||ℓ∞(Z), so T is a contraction mapping. It follows that it has a fixed point (xn)n∈N,
which hence satisfies xn = sin(n) + 0.5xn−1 + 0.4 sin(xn+1) for all n.

Exercise 4. Consider the following equation for an unknown function f : [0, 1] → R :

f(x) = g(x) + λ

∫ 1

0

(x− y)2f(y) dy +
1

2
sin(f(x)).

Prove that there exists a number λ0 such that for all λ ∈ [0, λ0) and all continuous functions
g on [0, 1], the equation has a continuous solution.

Solution 4. This is, of course, a contraction mapping problem. Let T (f)(x) = g(x) +

λ
∫ 1

0
(x− y)2f(y) dy + 1

2
sin(f(x)). Then

d(T (f1), T (f2)) ≤ sup
x∈[0,1]

λ

∫ 1

0

(x− y)2|f1(y)− f2(y)| dy +
1

2
| sin(f1(x))− sin(f2(x))|

≤ sup
x∈[0,1]

λ

∫ 1

0

(x− y)2|f1(y)− f2(y)| dy + sup
x∈[0,1]

1

2
| sin(f1(x))− sin(f2(x))|.

Since | sin′(x)| ≤ 1 for all x, 1
2
| sin(f1(x))− sin(f2(x))| ≤ 1

2
|f1(x)− f2(x)|, so

sup
x∈[0,1]

1

2
| sin(f1(x))− sin(f2(x))| ≤

1

2
d(f1, f2).

Then it suffices to choose to chose λ small enough so that λ
∫ 1

0
(x − y)2|f1(y) − f2(y)| dy ≤

1
3
d(f1, f2). To see that this can be done, note that

∫ 1

0
(x−y)2|f1(y)−f2(y)| dy ≤ d(f1, f2)

∫ 1

0
(x−

y)2 dy = d(f1, f2)
x3−(x−1)3

3
. By the mean-value theorem, x3−(x−1)3

3
≤ supx∈[−1,1] x

2 ≤ 1.
Therefore,

∫ 1

0
(x− y)2|f1(y)− f2(y)| dy ≤ d(f1, f2), so if we take λ0 =

1
3
, then if λ ≤ λ0, then

λ
∫ 1

0
(x− y)2|f1(y)−f2(y)| dy ≤ 1

3
d(f1, f2) and hence d(T (f1), T (f2)) ≤ 5

6
d(f1, f2). Then T is

a contraction mapping, so it has a fixed point, which necessarily solves the given equation.
It is part of the contraction mapping theorem that such a fixed point is unique, but it

is quite easy to prove as well. Suppose T has two fixed points f1, f2. Then since T is a
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contraction, d(T (f1), T (f2)) < (1 − ε)d(f1, f2) for some ε ∈ (0, 1), but d(T (f1), T (f2)) =
d(f1, f2), a contradiction unless both are zero. Hence, the fixed point is unique.

Exercise 5. Let K be a continuous function on [0, 1] × [0, 1] satisfying |K| < 1. Suppose
that g is a continuous function on [0, 1]. Show that there exists a continuous function f on
[0, 1] such that

f(x) = g(x) +

∫ 1

0

f(y)K(x, y) dy.

Solution 5. This is a contraction mapping problem. Our operator will be Tf(x) = g(x) +∫ 1

0
f(y)K(x, y) dy. Note that since K is continuous on a compact interval, it acheives

it’s supremum. Since |K| < 1, we therefore know |K| ≤ c for some c < 1. Then
|Tf1(x)−Tf2(x)| ≤

∫ 1

0
|f1(y)−f2(y)||K(x, y)| dy ≤ c supx∈[0,1] |f1(x)−f2(x)|. It follows that

d(Tf1, T f2) ≤ cd(f1, f2), so T is a contraction mapping. Then by the contraction mapping
theorem, it has a fixed point f . Hence, f satisfies f(x) = g(x) +

∫ 1

0
f(y)K(x, y) dy.

Exercise 6. Let L : [0, 1] → [0, 1] be a function satisfying
|L(x2)− L(x1)| ≤ |x2 − x1|/4, |L(1/2)− 1/2| < 1/4.

Prove that there is a continuous function f : [0, 1] → [0, 1] satisfying
f(x) = (1− x)L(f(x)) + 1/100.

Solution 6. We are looking for a fixed point of a functional Tf(x) = (1− x)L(f(x)) + 1
100

acting on the complete metric space M of continuous functions from [0, 1] to [0, 1], with sup
metric. First, we need to check that is well-defined, that is, that T (f) ∈ M for any f ∈ M .
Since |L(1/2) − 1/2| < 1/4, we know that L(1/2) ∈ (1/4, 3/4). Then for any x ∈ [0, 1],
|x − 1/2| < 1/2, so |L(x) − L(1/2)| ≤ 1/8, and hence L(x) ∈ [1/8, 7/8]. Then if x ∈ [0, 1],
(1− x)L(f(x)) ∈ [0, 7/8], so (1− x)L(f(x)) + 1/100 ∈ [0, 1]. Hence, Tf(x) ∈ [0, 1] for all x,
so Tf ∈ M , and T : M → M is a well-defined map.

Now, let’s check that T is a contraction. For any f, g ∈ C([0, 1]) and point x, |Tf(x) −
Tg(x)| ≤ |1− x||L(f(x))− L(g(x))| ≤ |f(x)− g(x)|/4. Hence, supx∈[0,1] |Tf(x)− Tg(x)| ≤
1
4
supx∈[0,1] |f(x)− g(x)|, so d(Tf, Tg) ≤ 1

4
d(f, g). It follows that T has a fixed point f ∈ M ,

as desired.


