DAY 4 PROBLEMS AND SOLUTIONS

Exercise 1. Let K : [a,b] X [a,b] — R be a differentiable function such that

max |K(z,t)] <1, max
[a,b] [a,b]?

0K
il <1.
ox (:c,t)’ <1

Consider the space C|a,b] of continuous functions on [a,b] with the sup-norm. For f €
Cla, b], define

Af(z) = / K (o 0)f(t) dt.

(1) Prove that {Af : maxp |f(x)| < 1} is a totally bounded subset of Cla, b].
(2) If in (1) we drop the assumption max(,y2 |5 (2, ¢)| < 1 and keep the other assump-
tions, does {Af : maxyy |f(2)| < 1} have to be a totally bounded subset of Cl[a, b]?

Solution 1.

(1) The usual definition of a totally bounded subset E of a metric space M is one where
for any € > 0, we can cover the set with finitely many e-balls centered in E. This
turns out to be equivalent to a set being precompact (that is, every sequence in E
has a convergent subsequence), which will be a more convenient way to prove a set
is totally bounded. We will prove the useful direction: suppose E C M is not totally
bounded. Then we can find an infinite sequence of e-seperated points in M, which
cannot be convergent, and hence M is not precompact. The contrapositive of what
we have proved is that precompact sets must be totally bounded.

So it suffices to prove that {Af : maxyy |f(x)| < 1} is precompact. Suppose
gn = Af, for some sequence f, satisfying max,cp, 4 | fn(2)| < 1. We need to check two
conditions to apply Arzela-Ascoli. First, we needed to check that {g,} is uniformly
bounded. This is because |Af,(z)| < (b—a)supyepe) K (2,1) f(t)] < (b—a). Now, we
need to prove that {g,} is uniformly equicontinuous. Fix ¢ > 0. For any z,y € [a, b|
and any n,

b
Afu(x) — Afaly)] < / K (a,t) — Ky DI (2) d.

By the mean value theorem, |K(x,t) — K(y,t)| < |7 — y|supz ey ‘%—I;(f, t)‘ <
|£If - y|7 S0
|Afn(z) = Afa(y)] < (0 —a)lz —y] sup |f@)] < (b—a)lz—yl.
t€la,
Hence g, is uniformly equicontinuous. By Arzela-Ascoli, it has a convergent subse-
quence, so {Af : maxpy | f(z)| < 1} is precompact, as desired.
(2) We will give essentially the same proof, but it will require a little more care without
using the bound maxi, 5 |%—§(m,t)‘ < 1. The only part that changes is proving

equicontinuity. Since K is differentiable, it is continuous, and since [a, b] is compact,
1
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it is uniformly continuous. Fix e > 0 and choose § > 0 such that if ||(x,t)—(y, s)|| < 9,
then |K(z,t) — K(y,s)| <e/(b—a). Then

Afule) = Afay)] < [ 1K@t) = K@Oll50)] dt < /(b -a) [ 170)] de <

We therefore have equicontinuity, and the rest of the proof follows.

Exercise 2. Let K : [a,b] X [a,b] — R be a continuous function. Consider the space C|a, b]
of continuous functions on [a, b] with the sup-norm. For f € Cla,b|, define

b
&ﬂ@z/Kwﬁth

(1) Is {Skf : maxy | f(x)| < 1} necessarily a totally bounded subset of Cla, b]?
(2) Let f, be a sequence of continuous functions on [a, b] satisfying
sup sup [fu(2)] < 1.
n  x€la,b]
Does the sequence Sk f, necessarily have a convergent subsequence? Give a proof or
counterexample.
(3) Let K, be a sequence of continuous functions on [a,b] X [a,b] and assume that

sgpmax{lKn(x,y)] (z,y) € [a,b] X [a,b]} < 1.

Let f € Cla,b]. Does the sequence Sk, f necessarily have a convergent subsequence
in Cla, b]? Prove or give a counterexample.

Solution 2.

(1) Yes. It suffices to prove any sequence in £ = {Skf : maxyy|f(z)| <} has a
convergent subsequence, which will follow from the Arzela-Ascoli theorem. Take
a sequence Sk (f1),Sk(f2), -+ € E. We need to prove this sequence is uniformly
bounded and equicontinuous. Since K is continuous on a compact set, it is bounded
above by some M. Then since each sup,ci,p [fn(®)] < 1, sup,e [Sx(fa)l(z) <
(b —a)M. To see equicontinuity, fix ¢ > 0. Since K is continuous on a compact

interval, it is uniformly continuous, so we can find § such that if |z — y| < ¢, then
|K(z,t) — K(y,t)] <e/(b—a). We know that

1Sk (fu) (@) = Sk (fa) ()| < / | K (z,t) — K(y, 0)|f(t) dt <e.

By Arzela-Ascoli, Sk(f,) has a convergent subsequence. It follows that {Skf :
max(, ) | f(z)] < 1} must be totally bounded.
(2) Yes, as was proven in part (i).

(3) Without loss of generality, we may assume that [a,b] = [-1/2,1/2]. Set K, (x,t) =
cos(nzt) and f(z) = 1. It is straightforward to compute that
sin(nx) B 7& 0
S = .
K, f () {1 R

Suppose {Sk, f(x)} had a convergent subsequence. Then its limit f is continuous,
but we have f(0) = 1 and f(x) = 0 for any x # 0, a contradiction. Hence, {Sk, f}
cannot have a convergent subsequence.
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Exercise 3. For f € L?, let F(z) = [ f(

(1)

(2)

Prove that

/01 (Fif”)y dr < 4/011’2(9;) dx

Af(x) =

For z € [0, 1]

1 x
z+/1 4+ |log(z)| /0 1) dt

Prove that if f, is a sequence of continuous functions on [0, 1] with sup,, || fn|[22(j0,1)) <
1, then Af, has a subsequence converging in the L*([0,1]) norm.

Solution 3.

(1)

[(2)e-r

Using Cauchy-Schwartz, we see that |F2 (x)] <z [ f2(t) dt. Then @) (x | Iy 2 (@)
@) (w)l = 0. Usmg this
and integrating by parts, we see that
x)|0 ! F(x
)‘+2/f(x)() —F(1 +2/f /f
0

1/2 1/2
Then by Cauchy Schwartz, fol f(m)@ dr < (fol () dw) ( 01 @ da:) , SO

By dominated convergence, lim,_. fom f2(t) dt =0, so lim,_,o+

2 1/2 1/2

fol (@) dr < 2 <f01 () dq:) / < 01 @ da:) / . Rearranging and squaring, we
arrive at the desired inequality.
It would be great if we could apply Arzela-Ascoli directly to Af,, but I don’t think
that is possible. But we can apply Arzela-Ascoli to g,(x fo fn(t) dt. To see that
this is uniformly bounded, note that by Cauchy-Schwarz, |gn( ) < 2V fullz2qo,1)) <
1, since x € [0, 1]. We similarly have |g,(z)—gn(y)| < |x—y|1/2||fn||L2, so {gn : n € N}
is equicontinuous. Then it has a uniformly convergent subsequence, g, with limit g.

I first tried to prove that Af,, — L , but I didn’t get anywhere doing that.

z/ 14| log(x)

I guessed we want to use part (a) somehow, Wthh suggests that instead of comparing
Gn,, o g (which might not be of the form fo t) dt), we should be comparing g,, to
gn;- Conveniently, we know that g,, is a Cauchy sequence and, since L? is complete,
it suffices to prove that Af,, is Cauchy.

Let’s split up the integral to a part near 0 and everything else. Specifically,

5 ( _ 2 1 _
Gni, () = gn, (1)) (9 () = g, (%))
Af, — Af. |2 :/ . & dx + . ] dx
WS = Ao = =0 Tog@) ¥y a0+ Thog(a))
Bv th t ‘Sw de < — 4 2 o <
y the previous part, [, 22 (1 Tog(z) TS 1+|10g ‘fo (fu(x) = fo,(2))* do <
for some positive constant C’ using the boundedness of ||f,||r2. On the

L
1+ log(d)

other hand fl (g;k(lxw dr < 33 2 119n. = Gny ||, using the fact that 1+|1;g(x)| <L
Now to prove ||Afy, — Afy, |3 12(0.1)) < € choose § sufficiently small so that ——= +|1ig( ) <
c €62

55 and then choose K sufficiently large so that for k > K, [[gn, — gn,||7~ < 55~

Combining these bounds, we see that for k > K, ||Af,, — Afnj||%2([071]) < e. Since ¢
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was arbitrary, we conclude that Af,, is Cauchy in the L? norm and hence Af, has a
convergent subsequence.

Exercise 4. Suppose S is the set of real-valued functions continuous g on [0, 1] that satisfy

two conditions: )
/ g(x) dx
0

l9(x) = g(y)| < |z -yl
for each z,y € [0,1]. Consider the functional

Flo) = [ (1=50%9"(e) do.

Is F bounded on S?7 Does it acheive it’s maximum on S?

<1

and
1/2

Solution 4. First, let’s prove that F' is bounded. The conditions on .S do not individually
imply that each ¢ is bounded, but taken together, they imply that each g € S is bounded.
Suppose that g(x) > 2 for some z € [0, 1]. Then since |g(y) — g(x)| < 1 for all y € [0, 1], we
have that g(y) > 1 for all y € [0, 1], in which case fol g(y) dy > 1, a contradiction. Similarly,
we cannot have g(z) < —2. Then |g(z)| < 2 for all z € [0,1], so [¢"°(z)| < 2'° for all
z € [0,1].

Now, apply Hélder’s inequality to see that

1
Flo)l< [ (=5) do sup 9" < €
0 z€[0,1]
for some fixed constant C' not depending on g.

To see that it achieves its maximum is somewhat trickier. Suppose M = sup g5 F'(g).
Then there is a sequence g, € S such that lim,_,. F(g,) = M. Let’s prove that g, subse-
quentially converges to some g € S. Since F' is bounded, it is continuous on S, and hence g
will achieve the maximum.

We will prove g, subsequentially converges using Arzela-Ascoli. We have already noted
that elements of S are uniformly bounded. The second condition on elements of S also
implies that S is equicontinuous. If we take ¢ > 0, then if |x — y| < €2, then for any g € S,
lg(x) — g(y)| < e. It follows that S is an equicontinuous family, so g, has a convergent
subsequence g, , converging to some g. We have already noted that the /' is continuous, so
F(g) = M. It remains to prove that g € S. Since g, is uniformly bounded, we can apply

o ole) do| <

1. For other condition, we have that |g(x) — ¢g(y)| = limy 0 |gn(2) — g ()| < v/|z — y] for
any pair x,y. Hence, g € S and F' achieves its maximum on S.

dominated convergence to see that limy_,, fol G, (7) do = fol g(x) dz. Hence,

Exercise 5. Suppose that f, : [0, 1] — R is a sequence of continuous functions each of which
has continuous first and second derivatives on (0, 1). Prove: If

f(z) = 1i_>rn folz) forall ze]0,1]

and

4
SUp mnax | fn(@)] < o0,
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then f” exists and is continuous on (0, 1).

Solution 5. We will use Arzela-Ascoli on f], to prove that it has a uniformly convergent sub-
sequence, then prove that if f,, — f uniformly and f/ — ¢ uniformly, then f is differentiable
and f' = g.

Let sup,,~; maxo<,<1 |f(z)| = M. Equicontinuity is easy: for any z,y € [0,1], |f!(z) —
()] < |z —y|max,eoy | £7(€)] < M|z — y|, so ' is equicontinuous.

Uniform boundedness is a little tricker. If f/(0) exists and is uniformly bounded, then
|fl(z) — f1(0)] < Mz < M for all z € [0, 1], by the mean value theorem, so as long as we
can make sense of f/(0) and prove it is bounded, we are good to go. We know for each n
that f/(z) forms a Cauchy sequence in z as x — 0, since |f/ (x) — f/(y)| < M|z — y|, so it
must converge as © — 0. Then by the mean value theorem, for any x € [0, 1], there exists
y € (0,z) such that f"—” f1(0) = fl(y) — f(0), so since f/(y) — f/(0) as x — 0,
we have that lim, .o M = f/(0), as desired. Now to prove that f’ (0) is uniformly

)

bounded, note we can Taylor expand f,, at 0 to conclude that f,(1/2) = f,(0) + 2 (0 + Cn,
where ¢, is bounded above by a constant times M (from the remainder form of the Taylor
expansion, or the mean value theorem again). Then f/(0) = 2(f,(1/2) — f.(0) — ¢,). Since
fn(0) and f,,(1/2) are convergent sequences, they are bounded, f/(0) is a bounded sequence,
and hence f/ (x) is uniformly bounded.

Now we know that f,, — f uniformly and f; — g uniformly, so let’s prove the claim I
made in the first sentence, that f is differentiable and f’ = g (you could probably get away
with stating this as a fact, but if you have time and can come up with the proof, it’s worth
including). I think the easiest Way to do this is by proving that the integral of g coincides

with f(z)— f(0). Let G(z) = [ g(t) dt. Then since uniform limits on compact sets commute
with integrals G(z ) = hmkHOO Jo S () dt = Timy_,oo fr, () = fn, (0) = f(z) — f(0). Then
f(x) 0)+ fo ) dt, so by the fundamental theorem of calculus, f is differentiable with

derlvatlve qg.



