
DAY 4 PROBLEMS AND SOLUTIONS

Exercise 1. Let K : [a, b]× [a, b] → R be a differentiable function such that

max
[a,b]2

|K(x, t)| ≤ 1,max
[a,b]2

∣∣∣∣∂K∂x (x, t)

∣∣∣∣ ≤ 1.

Consider the space C[a, b] of continuous functions on [a, b] with the sup-norm. For f ∈
C[a, b], define

Af(x) =

∫ b

a

K(x, t)f(t) dt.

(1) Prove that {Af : max[a,b] |f(x)| ≤ 1} is a totally bounded subset of C[a, b].
(2) If in (1) we drop the assumption max[a,b]2

∣∣∂K
∂x

(x, t)
∣∣ ≤ 1 and keep the other assump-

tions, does {Af : max[a,b] |f(x)| ≤ 1} have to be a totally bounded subset of C[a, b]?

Solution 1.
(1) The usual definition of a totally bounded subset E of a metric space M is one where

for any ε > 0, we can cover the set with finitely many ε-balls centered in E. This
turns out to be equivalent to a set being precompact (that is, every sequence in E
has a convergent subsequence), which will be a more convenient way to prove a set
is totally bounded. We will prove the useful direction: suppose E ⊂ M is not totally
bounded. Then we can find an infinite sequence of ε-seperated points in M , which
cannot be convergent, and hence M is not precompact. The contrapositive of what
we have proved is that precompact sets must be totally bounded.

So it suffices to prove that {Af : max[a,b] |f(x)| ≤ 1} is precompact. Suppose
gn = Afn for some sequence fn satisfying maxx∈[a,b] |fn(x)| ≤ 1. We need to check two
conditions to apply Arzela-Ascoli. First, we needed to check that {gn} is uniformly
bounded. This is because |Afn(x)| ≤ (b−a) supt∈[a,b] |K(x, t)f(t)| ≤ (b−a). Now, we
need to prove that {gn} is uniformly equicontinuous. Fix ε > 0. For any x, y ∈ [a, b]
and any n,

|Afn(x)− Afn(y)| ≤
∫ b

a

|K(x, t)−K(y, t)|f(t) dt.

By the mean value theorem, |K(x, t) − K(y, t)| ≤ |x − y| sup(x,t)∈[a,b]
∣∣∂K
∂x

(x, t)
∣∣ ≤

|x− y|, so

|Afn(x)− Afn(y)| ≤ (b− a)|x− y| sup
t∈[a,b]

|f(t)| ≤ (b− a)|x− y|.

Hence gn is uniformly equicontinuous. By Arzela-Ascoli, it has a convergent subse-
quence, so {Af : max[a,b] |f(x)| ≤ 1} is precompact, as desired.

(2) We will give essentially the same proof, but it will require a little more care without
using the bound max[a,b]2

∣∣∂K
∂x

(x, t)
∣∣ ≤ 1. The only part that changes is proving

equicontinuity. Since K is differentiable, it is continuous, and since [a, b] is compact,
1
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it is uniformly continuous. Fix ε > 0 and choose δ > 0 such that if ||(x, t)−(y, s)|| < δ,
then |K(x, t)−K(y, s)| < ε/(b− a). Then

|Afn(x)− Afn(y)| <
∫ b

a

|K(x, t)−K(y, t)||f(t)| dt ≤ ε/(b− a)

∫ b

a

|f(t)| dt < ε.

We therefore have equicontinuity, and the rest of the proof follows.

Exercise 2. Let K : [a, b]× [a, b] → R be a continuous function. Consider the space C[a, b]
of continuous functions on [a, b] with the sup-norm. For f ∈ C[a, b], define

SKf(x) =

∫ b

a

K(x, t)f(t) dt.

(1) Is {SKf : max[a,b] |f(x)| ≤ 1} necessarily a totally bounded subset of C[a, b]?
(2) Let fn be a sequence of continuous functions on [a, b] satisfying

sup
n

sup
x∈[a,b]

|fn(x)| ≤ 1.

Does the sequence SKfn necessarily have a convergent subsequence? Give a proof or
counterexample.

(3) Let Kn be a sequence of continuous functions on [a, b]× [a, b] and assume that

sup
n

max{|Kn(x, y)| : (x, y) ∈ [a, b]× [a, b]} ≤ 1.

Let f ∈ C[a, b]. Does the sequence SKnf necessarily have a convergent subsequence
in C[a, b]? Prove or give a counterexample.

Solution 2.
(1) Yes. It suffices to prove any sequence in E = {SKf : max[a,b] |f(x)| ≤} has a

convergent subsequence, which will follow from the Arzela-Ascoli theorem. Take
a sequence SK(f1), SK(f2), · · · ∈ E. We need to prove this sequence is uniformly
bounded and equicontinuous. Since K is continuous on a compact set, it is bounded
above by some M . Then since each supx∈[a,b] |fn(x)| ≤ 1, supx∈[a,b] |SK(fn)|(x) ≤
(b − a)M . To see equicontinuity, fix ε > 0. Since K is continuous on a compact
interval, it is uniformly continuous, so we can find δ such that if |x − y| < δ, then
|K(x, t)−K(y, t)| < ε/(b− a). We know that

|SK(fn)(x)− SK(fn)(y)| ≤
∫ b

a

|K(x, t)−K(y, t)|f(t) dt < ε.

By Arzela-Ascoli, SK(fn) has a convergent subsequence. It follows that {SKf :
max[a,b] |f(x)| ≤ 1} must be totally bounded.

(2) Yes, as was proven in part (i).
(3) Without loss of generality, we may assume that [a, b] = [−1/2, 1/2]. Set Kn(x, t) =

cos(nxt) and f(x) = 1. It is straightforward to compute that

SKnf(x) =

{
sin(nx)

nx
x ̸= 0

1 x = 0
.

Suppose {SKnf(x)} had a convergent subsequence. Then its limit f is continuous,
but we have f(0) = 1 and f(x) = 0 for any x ̸= 0, a contradiction. Hence, {SKnf}
cannot have a convergent subsequence.
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Exercise 3. For f ∈ L2, let F (x) =
∫ x

0
f(t) dt.

(1) Prove that ∫ 1

0

(
F (x)

x

)2

dx ≤ 4

∫ 1

0

f 2(x) dx.

(2) For x ∈ [0, 1]

Af(x) =
1

x
√
1 + | log(x)|

∫ x

0

f(t) dt.

Prove that if fn is a sequence of continuous functions on [0, 1] with supn ||fn||L2([0,1]) ≤
1, then Afn has a subsequence converging in the L2([0, 1]) norm.

Solution 3.
(1) Using Cauchy-Schwartz, we see that |F 2(x)| ≤ x

∫ x

0
f 2(t) dt. Then |F 2(x)|

x

∫ x

0
f 2(t) dt.

By dominated convergence, limx→0

∫ x

0
f 2(t) dt = 0, so limx→0+

|F 2(x)|
x

= 0. Using this
and integrating by parts, we see that∫ 1

0

(
F (x)

x

)2

dx =
F 2(x)

x

∣∣∣0
1
+2

∫ 1

0

f(x)
F (x)

x
dx = −F 2(1)+2

∫ 1

0

f(x)
F (x)

x
dx ≤ 2

∫ 1

0

f(x)
F (x)

x
dx.

Then by Cauchy Schwartz,
∫ 1

0
f(x)F (x)

x
dx ≤

(∫ 1

0
f 2(x) dx

)1/2 (∫ 1

0
F (x)
x

dx
)1/2

, so∫ 1

0

(
F (x)
x

)2

dx ≤ 2
(∫ 1

0
f 2(x) dx

)1/2 (∫ 1

0
F (x)
x

dx
)1/2

. Rearranging and squaring, we
arrive at the desired inequality.

(2) It would be great if we could apply Arzela-Ascoli directly to Afn, but I don’t think
that is possible. But we can apply Arzela-Ascoli to gn(x) =

∫ x

0
fn(t) dt. To see that

this is uniformly bounded, note that by Cauchy-Schwarz, |gn(x)| ≤ x1/2||fn||L2([0,1]) ≤
1, since x ∈ [0, 1]. We similarly have |gn(x)−gn(y)| ≤ |x−y|1/2||fn||L2 , so {gn : n ∈ N}
is equicontinuous. Then it has a uniformly convergent subsequence, gnk

with limit g.
I first tried to prove that Afnk

→ g(x)

x
√

1+| log(x)|
, but I didn’t get anywhere doing that.

I guessed we want to use part (a) somehow, which suggests that instead of comparing
gnk

to g (which might not be of the form
∫ x

0
f(t) dt), we should be comparing gnk

to
gnj

. Conveniently, we know that gnk
is a Cauchy sequence and, since L2 is complete,

it suffices to prove that Afnk
is Cauchy.

Let’s split up the integral to a part near 0 and everything else. Specifically,

||Afnk
− Afnj

||2L2([0,1]) =

∫ δ

0

(gnk
(x)− gnj

(x))2

x2(1 + | log(x)|)
dx+

∫ 1

δ

(gnk
(x)− gnj

(x))

x2(1 + | log(x)|)
dx

By the previous part,
∫ δ

0

(gnk
(x)−gnj (x))

2

x2(1+| log(x)|) dx ≤ 4
1+| log(δ)|

∫ 1

0
(fnk

(x) − fnj
(x))2 dx ≤

C
1+| log(δ)| for some positive constant C, using the boundedness of ||fn||L2 . On the

other hand,
∫ 1

δ

(gnk
(x)−gnj (x))

2

x2(1+| log(x)|) dx ≤ 1
δ2
||gnk

−gnk
||2L∞ , using the fact that 1

1+| log(x)| ≤ 1.
Now to prove ||Afnk

−Afnj
||2L2([0,1]) < ε, choose δ sufficiently small so that 1

1+| log(δ)| <
ε
2C

and then choose K sufficiently large so that for k ≥ K, ||gnk
− gnk

||2L∞ < εδ2

2
.

Combining these bounds, we see that for k ≥ K, ||Afnk
− Afnj

||2L2([0,1]) ≤ ε. Since ε
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was arbitrary, we conclude that Afnk
is Cauchy in the L2 norm and hence Afn has a

convergent subsequence.

Exercise 4. Suppose S is the set of real-valued functions continuous g on [0, 1] that satisfy
two conditions: ∣∣∣∣∫ 1

0

g(x) dx

∣∣∣∣ ≤ 1

and
|g(x)− g(y)| ≤ |x− y|1/2

for each x, y ∈ [0, 1]. Consider the functional

F (g) =

∫ 1

0

(1− 5x2)g10(x) dx.

Is F bounded on S? Does it acheive it’s maximum on S?

Solution 4. First, let’s prove that F is bounded. The conditions on S do not individually
imply that each g is bounded, but taken together, they imply that each g ∈ S is bounded.
Suppose that g(x) > 2 for some x ∈ [0, 1]. Then since |g(y)− g(x)| < 1 for all y ∈ [0, 1], we
have that g(y) > 1 for all y ∈ [0, 1], in which case

∫ 1

0
g(y) dy > 1, a contradiction. Similarly,

we cannot have g(x) < −2. Then |g(x)| < 2 for all x ∈ [0, 1], so |g10(x)| < 210 for all
x ∈ [0, 1].

Now, apply Hölder’s inequality to see that

|F (g)| ≤
∫ 1

0

(1− 5x2) dx sup
x∈[0,1]

|g10(x)| < C

for some fixed constant C not depending on g.
To see that it achieves its maximum is somewhat trickier. Suppose M = supg∈S F (g).

Then there is a sequence gn ∈ S such that limn→∞ F (gn) = M . Let’s prove that gn subse-
quentially converges to some g ∈ S. Since F is bounded, it is continuous on S, and hence g
will achieve the maximum.

We will prove gn subsequentially converges using Arzela-Ascoli. We have already noted
that elements of S are uniformly bounded. The second condition on elements of S also
implies that S is equicontinuous. If we take ε > 0, then if |x− y| < ε2, then for any g ∈ S,
|g(x) − g(y)| < ε. It follows that S is an equicontinuous family, so gn has a convergent
subsequence gnk

, converging to some g. We have already noted that the F is continuous, so
F (g) = M . It remains to prove that g ∈ S. Since gn is uniformly bounded, we can apply
dominated convergence to see that limk→∞

∫ 1

0
gnk

(x) dx =
∫ 1

0
g(x) dx. Hence,

∣∣∣∫ 1

0
g(x) dx

∣∣∣ ≤
1. For other condition, we have that |g(x)− g(y)| = limk→∞ |gn(x)− gn(y)| ≤

√
|x− y| for

any pair x, y. Hence, g ∈ S and F achieves its maximum on S.

Exercise 5. Suppose that fn : [0, 1] → R is a sequence of continuous functions each of which
has continuous first and second derivatives on (0, 1). Prove: If

f(x) = lim
n→∞

fn(x) for all x ∈ [0, 1]

and
sup
n≥1

max
0<x<1

|f ′′
n(x)| < ∞,
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then f ′ exists and is continuous on (0, 1).

Solution 5. We will use Arzela-Ascoli on f ′
n to prove that it has a uniformly convergent sub-

sequence, then prove that if fn → f uniformly and f ′
n → g uniformly, then f is differentiable

and f ′ = g.
Let supn≥1max0<x<1 |f ′′

n(x)| = M . Equicontinuity is easy: for any x, y ∈ [0, 1], |f ′
n(x) −

f ′
n(y)| ≤ |x− y|maxx<ξ<y |f ′′

n(ξ)| ≤ M |x− y|, so f ′ is equicontinuous.
Uniform boundedness is a little tricker. If f ′

n(0) exists and is uniformly bounded, then
|f ′

n(x) − f ′
n(0)| ≤ Mx ≤ M for all x ∈ [0, 1], by the mean value theorem, so as long as we

can make sense of f ′
n(0) and prove it is bounded, we are good to go. We know for each n

that f ′
n(x) forms a Cauchy sequence in x as x → 0, since |f ′

n(x) − f ′
n(y)| ≤ M |x − y|, so it

must converge as x → 0. Then by the mean value theorem, for any x ∈ [0, 1], there exists
y ∈ (0, x) such that fn(x)−fn(0)

x
− f ′

n(0) = f ′
n(y) − f ′

n(0), so since f ′
n(y) → f ′

n(0) as x → 0,
we have that limx→0

fn(x)−fn(0)
x

= f ′
n(0), as desired. Now to prove that f ′

n(0) is uniformly
bounded, note we can Taylor expand fn at 0 to conclude that fn(1/2) = fn(0) +

f ′
n(0)
2

+ cn,
where cn is bounded above by a constant times M (from the remainder form of the Taylor
expansion, or the mean value theorem again). Then f ′

n(0) = 2(fn(1/2)− fn(0)− cn). Since
fn(0) and fn(1/2) are convergent sequences, they are bounded, f ′

n(0) is a bounded sequence,
and hence f ′

n(x) is uniformly bounded.
Now we know that fnk

→ f uniformly and f ′
nk

→ g uniformly, so let’s prove the claim I
made in the first sentence, that f is differentiable and f ′ = g (you could probably get away
with stating this as a fact, but if you have time and can come up with the proof, it’s worth
including). I think the easiest way to do this is by proving that the integral of g coincides
with f(x)−f(0). Let G(x) =

∫ x

0
g(t) dt. Then since uniform limits on compact sets commute

with integrals, G(x) = limk→∞
∫ x

0
f ′
nk
(t) dt = limk→∞ fnk

(x) − fnk
(0) = f(x) − f(0). Then

f(x) = f(0) +
∫ x

0
g(t) dt, so by the fundamental theorem of calculus, f is differentiable with

derivative g.


