
DAY 3 PROBLEMS AND SOLUTIONS

Exercise 1. Take X ⊂ Rn, Y ⊂ Rn and let X + Y = {x+ y : x ∈ X, y ∈ Y }.
(1) Assume X is closed and Y is compact. Prove that X + Y is closed.
(2) If Y is closed but not compact, is X + Y closed? Prove or give a counterexample.

Solution 1.

(1) Suppose z is a limit of elements of X+Y , that is, limn→∞ xn+yn = z for xn ∈ X and
yn ∈ Y . Since Y is compact, yn has a convergent subsequence ynk

, with limit y ∈ Y .
Then z = limk→∞ xnk

+ynk
= limk→∞ xnk

+y. It follows that xnk
must be convergent

as well, and since X is closed, it’s limit x must fall in X. Then z = x+ y ∈ X + Y ,
so X + Y is closed.

(2) No. Take X = {−n : n ∈ N} and Y = {n + 1/n : n ∈ N}. Both are discrete
and hence closed, but neither are compact. Then 1/n ∈ X + Y for all n ∈ N, but
0 /∈ X + Y .

Exercise 2. A function f : U → R defined on a subset U ⊂ Rn is

• locally bounded if for all x ∈ U there exists ε, R > 0 such that |f(y)| ≤ R for all
y ∈ U with |x− y| < ε,

• globally bounded if there exists R > 0 such that |f(y)| ≤ R for all y ∈ U .

Prove: If U ⊂ Rn, then the following are equivalent:

(1) U is compact,
(2) every locally bounded function f : U → R is globally bounded.

Solution 2. Let’s first prove (1) implies (2). Suppose U is compact and let f be a locally
bounded function. For every x ∈ U , we have a ball B(x, ε) on which f is bounded by R. Let
U be the collection of such balls. This forms an open cover of U , so since U is compact, it has
a finite subcover U ′ = {B(x1, ε1), . . . , B(xm, εm)}, where f is bounded by Ri on B(xi, εi).
Then f is bounded on all of U by max{R1, . . . , Rm}, so f is globally bounded.

Now, let’s prove (2) implies (1). We will prove U is closed and bounded. First, let’s prove
it is closed. Take y in the closure of U and suppose y /∈ U . Then f(x) = 1

|x−y| is locally
bounded: for any x ∈ U , let r = |x − y|. Then if |x − z| < r/2, |x − y| ≤ |x − z| + |z − y|,
so r/2 ≤ |x − y| − |x − z| ≤ |z − y|. Hence, 2

r
≥ 1

|z−y| = f(z), so f is locally bounded. On
the other hand, there exists a sequence xn ∈ U converging to y. Then f(xn) = 1

|xn−y| is
unbounded, so f is not globally bounded, a contradiction. It follows that U must be closed.

To see that U is bounded, let f(x) : U → R be given by f(x) = |x|. This is locally
bounded, since if |x − y| ≤ 1, then |f(y)| ≤ |x − y| + |x| ≤ |x| + 1. Then f must be
globall bounded by some R, so U ⊂ B(0, R). Hence, U is bounded and closed, so it must be
compact.
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Exercise 3. Let K denote the collection of compact subsets of [0, 1]. Define the Hausdorff
metric on K by

d(K1, K2) = sup
x∈K1

inf
y∈K2

|x− y|+ sup
x∈K2

inf
y∈K1

|x− y|.

Prove that (K, d) is a complete metric space.

Solution 3. First, let’s check that d is a metric. It is hopefully clear that d(K,K) = 0 for
any K ∈ K. If K1, K2 are distinct compact sets, then, without loss of generality, there exists
x ∈ K1 \K2, in which case d(K1, K2) > infy∈K2 |y − x| > 0, so d(K1, K2) = 0 if and only if
K1 = K2. Since the definition of d is symmetric in it’s inputs, d(K1, K2) = d(K2, K1). Now
take K1, K2, K3 ∈ K. We can bound by the triangle inequality

sup
x∈K1

inf
y∈K2

|x− y| ≤ sup
x∈K1

inf
y∈K3

inf
z∈K3

|x− z|+ |z − y|

≤ sup
x∈K1

inf
z∈K3

|x− z|+ inf
y∈K3

inf
z∈K2

|z − y|

≤ sup
x∈K1

inf
z∈K3

|x− z|+ sup
z∈K3

inf
y∈K2

|z − y|.

By the same reasoning, supy∈K2
infx∈K1 |x−y| ≤ supy∈K2

infz∈K3 |z−y|+supz∈K3
infx∈K1 |x−

z|. Summing these two gives that d(K1, K2) ≤ d(K1, K3) + d(K2, K3). Thus, the triangle
inequality holds.

Proving that the space is complete is quite a bit trickier. If you know what the lim sup
and lim inf of a collection of sets are, you should hope that those will coincide with the limit
in the Hausdorff topology, so this gives you an outline for how to approach this problem:
prove that if Kn is a Cauchy sequence in K, then it converges to lim supKn (I’m guessing
lim infKn would work as well, but I’ll leave that as an exercise for the reader). We actually
want to be a little more careful than just taking lim supKn, we will take our putative limit
to be K =

⋂
n∈N

⋃
j≥n Kj. Taking the closure is necessary to ensure K is compact. For

example, if Kn = [0, 1−1/n], then lim supKn = [0, 1), while the actual limit should be [0, 1].
Now, let’s prove Kn → K in the Hausdorff metric. Fix ε > 0 and choose N sufficiently

large so that for any n,m ≥ N , d(Kn, Km) < ε/100. Take arbitrary x ∈ K, we will prove
that infy∈Kn |x − y| < ε/2 for n ≥ N . Since x ∈

⋃
j≥N Kj, we can find some m ≥ N such

that for some y ∈ Km, |x− y| < ε/100. For any n ≥ N , since d(Kn, Km) < ε/100, we know
infz∈Kn |y − z| < ε/100, so there exists z ∈ Kn such that |y − z| < ε/100. It follows that
|x − z| < |x − y| + |y − z| < ε/50. Therefore, infx∈Kn |x − z| < ε/50 for any z ∈ K, and
hence supz∈K infx∈Kn |x− z| < ε/50.

Now take n ≥ N and x ∈ Kn. Since d(Kn, Km) < ε/100 for any m ≥ N , we know that
for any m ≥ N , there exists ym ∈ B(xn, ε/100). The sequence ym is contained in a compact
set, so it has a subsequential limit ymj

→ z ∈ B(xn, ε/100). Let’s prove that z ∈ K. We
need to prove that for any k ∈ N and any δ > 0, there exists a ∈

⋃
m≥k Km such that

|a − z| < δ. But we know that for j large enough, ymj
∈

⋃
m≥k Km and |ymj

− z| < δ.
Hence, z ∈

⋂
n∈N

⋃
j≥n Kj = K. Since z ∈ B(xn, ε/100), |z − x| ≤ ε/100. Therefore,

infz∈K |x−z| ≤ ε/100. Since x ∈ Kn was arbitrary, we see that supx∈Kn
infz∈K |x−z| ≤ ε/100.

Finally, we conclude that d(Kn, K) = supz∈K infx∈Kn |x− z|+ supx∈Kn
infz∈K |x− z| < ε, as

desired.

Exercise 4. Prove that any open set U ⊂ Rn can be expressed as a countable union of
rectangles.
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Solution 4. Let U = {
∏n

i=1(ai, bi) ⊂ U : ai, bi ∈ Q}. Since Q is countable, U is countable.
For any point x ∈ U , there exists r > 0 such that B(x, r) ⊂ U . We can find q ∈ Q with
|q − x| < r/100 and r0 ∈ Q with r0 ∈ [0, r/10]. Then R =

∏n
i=1(qi − r0, qi + r0) ∈ U , q ∈ R,

and R ⊂ B(x, r) ⊂ U . Then U =
⋃

R∈U R and U is countable, as desired.

Exercise 5. Let x1, . . . , xn+1 be pairwise distinct real numbers. Prove that there exists
C > 0 such that: if P : R → R is a polynomial with degree at most n, then

max
x∈[0,1]

|P (x)| ≤ Cmax{|P (x1)|, . . . , |P (xn+1)|}.

Solution 5. This follows almost immediately from the fact that all norms on a finite dimen-
sional vector space are equivalent, but I think that might be too powerful of a result for you
to be allowed to use. I will give a direct proof instead. The open mapping theorem would
also let me skip some steps, but is certainly not necessary for this proof.

Let Pn = {P : R → R a polynomial : deg(P ) ≤ n} and equip this space with the sup-
norm || · ||L∞ . Define the linear map L : Pn → Rn+1 by L(P ) = (P (x1), . . . , P (xn+1)). This
is an injective function, since a degree n polynomial that vanishes at n + 1 points must
be 0. Since dim(Rn+1) = dim(Pn) = n + 1, L is a bijection. Therefore, it has an inverse
L−1 : Rn+1 → Pn (it’s not too hard to construct this explicitly, but probably longer to do
so than to use argument I gave for it’s existence). Linear maps are necessarily continuous,
so ||P ||L∞ = ||L−1(L(P ))||L∞ ≤ C|L(P )|, where | · | denotes the standard norm on Rn+1.
But |L(P )| =

√
P (x1)2 + · · ·+ P (xn+1)2 ≤ (n + 1)max{|P (x1)|, . . . , |P (xn+1)|}. Hence,

||P ||L∞ ≤ (n+ 1)Cmax{|P (x1)|, . . . , |P (xn+1)|}, as desired.

Exercise 6. Let f ∈ C1([0, 1]). Show that for every ε > 0 there exists a polynomial p such
that

||f − p||∞ + ||f ′ − p′||∞ < ε.

Solution 6. First, note that if |f ′ − p′|(x) < ε/2 for all x and if f(0) = p(0), then |f(x)−
p(x)| ≤

∫ x

0
|f ′(t) − p′(t)| dt ≤ ε/2. By Stone-Weierstrass, we can find a polynomial q

which satisfies ||q − f ′||L∞ < ε/2. Then p(x) =
∫ x

0
q(t) dt + f(0) is a polynomial, satisfies

p(0) = f(0), and ||p′ − f ′||L∞ < ε/2 and therefore satisfies ||f − p||L∞ < ε/2, solving the
problem.

Exercise 7. Let a = (an)n∈N be a sequence of positive real numbers. Prove that the set

X = {(xn)n∈N ∈ ℓ1(N) : xn ∈ [0, an] for all n ∈ N}
is compact in the ℓ1(N) norm if and only if (an)n∈N ∈ ℓ1(N).

Solution 7. Let’s start with the easy direction. Suppose X is compact. Define am ∈ X for
m ∈ N by amn = δn≤man. Then am must subsequentially converge to b ∈ X ⊂ ℓ1(N), but
bn = an for all n ∈ N (since a

mj
n = an if mj is our subsequence from compactness and j is

sufficiently large), so b = a, and hence a ∈ ℓ1(N).
Now, for the hard direction. When I was taking the quals, I didn’t know what a totally

bounded set was, so I would have proven this by proving any sequence in X has a convergent
subsequence. I am not going to present that argument here, but I invite you to give it a
try. If you get stuck, you could consult the proof that totally bounded and closed sets are
compact.

But now I know what a totally bounded set is, so I will prove it using that. Assume
a ∈ ℓ1(N). First, note that X is closed. If am ∈ X converges to a limit b, then amn → bn



4 DAY 3 PROBLEMS AND SOLUTIONS

for each n ∈ N. Since each amn ∈ [0, an], it follows that bn ∈ [0, an] and hence b ∈ X. Now,
let’s prove X is totally bounded. Fix ε > 0. Since a ∈ ℓ1, there exists N ∈ N such that∑

n>N an < ε
2
. For each n ≤ N , define a finite collection of reals b1n, . . . bjnn ∈ [0, an] such that

the ε
2N

balls around the elements bin cover [0, an]. Define the finite collection elements

B = {(bji11 , . . . , b
jiN
N , aN+1, aN+2, . . . ) : 1 ≤ jin ≤ jn for 1 ≤ n ≤ N}.

Let U denote the collection of ε-balls centered at points in B. For any x ∈ X,
∑

n>N |xn −
an| < ε

2
. For each n < N , we can find an element binn within ε

2N
of xn. Then b =

(bi11 , . . . , b
iN
N , aN+1, aN+2, . . . ) ∈ B and ||x − b||ℓ1 < N ε

2N
+ ε

2
≤ ε. Therefore, U covers

X. Since this can be done for any ε > 0, we know that X is totally bounded, and because
closed, totally bounded sets are compact, we are done.


