DAY 3 PROBLEMS AND SOLUTIONS

Exercise 1. Take X CR" Y CR"andlet X +Y ={z+y:x € X,y € Y}.

(1) Assume X is closed and Y is compact. Prove that X + Y is closed.
(2) If Y is closed but not compact, is X + Y closed? Prove or give a counterexample.

Solution 1.

(1) Suppose z is a limit of elements of X +Y, that is, lim,, o x, +y, = z for x,, € X and
Yy, € Y. Since Y is compact, y, has a convergent subsequence y,, , with limit y € Y.
Then z = limy_,o0 Tp,, + Yn,, = limy_yo0 Ty, +y. It follows that x,, must be convergent
as well, and since X is closed, it’s limit z must fall in X. Then z =z +y € X + Y,
so X +7Y is closed.

(2) No. Take X = {-n :n € N} and Y = {n+ 1/n : n € N}. Both are discrete
and hence closed, but neither are compact. Then 1/n € X +Y for all n € N, but
0¢ X +Y.

Exercise 2. A function f: U — R defined on a subset U C R" is

e locally bounded if for all x € U there exists ¢, R > 0 such that |f(y)] < R for all
y € U with |z —y| < ¢,
e globally bounded if there exists R > 0 such that |f(y)] < R for all y € U.

Prove: If U C R™, then the following are equivalent:

(1) U is compact,
(2) every locally bounded function f : U — R is globally bounded.

Solution 2. Let’s first prove (1) implies (2). Suppose U is compact and let f be a locally
bounded function. For every x € U, we have a ball B(x,¢) on which f is bounded by R. Let
U be the collection of such balls. This forms an open cover of U, so since U is compact, it has
a finite subcover U’ = {B(z1,€1),..., B(Tm,em)}, where f is bounded by R; on B(x;,¢;).
Then f is bounded on all of U by max{Rs,..., R}, so f is globally bounded.

Now, let’s prove (2) implies (1). We will prove U is closed and bounded. First, let’s prove

it is closed. Take y in the closure of U and suppose y ¢ U. Then f(x) = ﬁ is locally

bounded: for any x € U, let r = |z —y|. Then if |z — 2| <7/2, |z —y| < |z — 2| + |z — ],
sor/2 < |v—y|—|r—z <|z—y| Hence, 2> ﬁ = f(z), so f is locally bounded. On
the other hand, there exists a sequence x, € U converging to y. Then f(x,) = |xn—1_y|
unbounded, so f is not globally bounded, a contradiction. It follows that U must be closed.

To see that U is bounded, let f(z) : U — R be given by f(xz) = |z|. This is locally
bounded, since if |z — y| < 1, then [f(y)| < |z — y| + |z] < |z| + 1. Then f must be
globall bounded by some R, so U C B(0, R). Hence, U is bounded and closed, so it must be
compact.

18

1



2 DAY 3 PROBLEMS AND SOLUTIONS

Exercise 3. Let K denote the collection of compact subsets of [0,1]. Define the Hausdorff
metric on K by
d(Ky, K3) = sup inf |z —y|+ sup inf |z —y|.
(K1, Ky) xGII()lyeK2| Yl xe}%yeKJ Yl

Prove that (K, d) is a complete metric space.

Solution 3. First, let’s check that d is a metric. It is hopefully clear that d(K, K) = 0 for
any K € K. If Ky, Ky are distinct compact sets, then, without loss of generality, there exists
x € Ky \ Ky, in which case d(K7y, K3) > inf ek, |y — x| > 0, so d(K;, K3) = 0 if and only if
K; = Ks. Since the definition of d is symmetric in it’s inputs, d(K;, Ks) = d(K3, K1). Now
take K1, Ky, K3 € K. We can bound by the triangle inequality

sup inf |z —y| < sup inf inf |z —z|+ |z —
sup if o —yl < sup inf it fo =2+ ]z =y

< sup inf |z — 2|+ inf inf |2 —y|
rek, 2€K3 y€K3 z€ Ko

< sup inf |z —z|+ sup inf |z —yl.

zcK, z€K3 2€K3 ye Ko

By the same reasoning, sup,¢ ., infocx, [v—y| < sup,cr, infocx, [z —y[+sup, ek, infrek, [7—
z|. Summing these two gives that d(K;, Ky) < d(K;, K3) + d(Ks, K3). Thus, the triangle
inequality holds.

Proving that the space is complete is quite a bit trickier. If you know what the lim sup
and lim inf of a collection of sets are, you should hope that those will coincide with the limit
in the Hausdorff topology, so this gives you an outline for how to approach this problem:
prove that if K, is a Cauchy sequence in /C, then it converges to limsup K,, (I'm guessing
lim inf K, would work as well, but I'll leave that as an exercise for the reader). We actually
want to be a little more careful than just taking lim sup K,,, we will take our putative limit
to be K = (,enU i>n IS;. Taking the closure is necessary to ensure K is compact. For
example, if K,, = [0,1—1/n], then limsup K,, = [0, 1), while the actual limit should be [0, 1].

Now, let’s prove K, — K in the Hausdorff metric. Fix ¢ > 0 and choose N sufficiently
large so that for any n,m > N, d(K,, K,,) < €/100. Take arbitrary = € K, we will prove
that infycx, [v —y[ < /2 for n > N. Since x € J;5y K}, we can find some m > N such
that for some y € K,,, |z —y| < £/100. For any n > N, since d(K,, K,,) < £/100, we know
inf,ex, |y — 2| < £/100, so there exists z € K, such that |y — z| < ¢/100. It follows that
|z — 2| < |z —y| + |y — 2| < e/50. Therefore, inf,ck, |z — 2| < /50 for any z € K, and
hence sup, ¢y inf ek, |z — 2| < €/50.

Now take n > N and z € K,,. Since d(K,, K,,) < £/100 for any m > N, we know that
for any m > N, there exists y,, € B(x,,£/100). The sequence ¥, is contained in a compact
set, so it has a subsequential limit y,,, — 2z € B(z,,£/100). Let’s prove that z € K. We
need to prove that for any £ € N and any ¢ > 0, there exists a € |J,,~, Km such that
la — 2| < 0. But we know that for j large enough, yn, € U,op Km and |y, — 2| < 6.
Hence, z € (,enU;s, K; = K. Since 2z € B(xy,2/100), |z — x| < /100. Therefore,
inf,cx |x—2| < €/100. Since x € K, was arbitrary, we see that sup,cx, inf.cx |[r—2] < /100.
Finally, we conclude that d(K,,, K) = sup,¢ infoek, [ — 2| +sup,cp, inf.ex |2 — 2| <€, as
desired.

Exercise 4. Prove that any open set U C R™ can be expressed as a countable union of
rectangles.
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Solution 4. Let U = {[]_,(ai,b;) C U : a;,b; € Q}. Since Q is countable, U is countable.
For any point x € U, there exists r > 0 such that B(z,r) C U. We can find ¢ € Q with
lg — x| < r/100 and ry € Q with ry € [0,7/10]. Then R =[] ,(¢; —70,¢ +10) €U, q € R,
and R C B(z,r) CU. Then U = |z, R and U is countable, as desired.

Exercise 5. Let x1,...,2,1 be pairwise distinct real numbers. Prove that there exists
C > 0 such that: if P: R — R is a polynomial with degree at most n, then
max [P(x)] < Cmax{[P(a))].... | Plan)]}

Solution 5. This follows almost immediately from the fact that all norms on a finite dimen-
sional vector space are equivalent, but I think that might be too powerful of a result for you
to be allowed to use. I will give a direct proof instead. The open mapping theorem would
also let me skip some steps, but is certainly not necessary for this proof.

Let P, = {P : R — R a polynomial : deg(P) < n} and equip this space with the sup-
norm || - ||pe. Define the linear map L : P, — R""! by L(P) = (P(xy),..., P(x,.1)). This
is an injective function, since a degree m polynomial that vanishes at n 4+ 1 points must
be 0. Since dim(R"™) = dim(P,) = n + 1, L is a bijection. Therefore, it has an inverse
L7t : R"™! — P, (it’s not too hard to construct this explicitly, but probably longer to do
so than to use argument I gave for it’s existence). Linear maps are necessarily continuous,
0 ||P||p= = ||[L7YL(P))||z~ < C|L(P)|, where | -| denotes the standard norm on R"!.
But |L(P)] = /P(@1)2+ -+ P(xn41)?> < (n+ 1) max{|P(z1)],...,|P(zn+1)|}. Hence,
||PllLe < (n+ 1)Cmax{|P(z1)|,...,|P(zns1)|}, as desired.

Exercise 6. Let f € C1([0,1]). Show that for every e > 0 there exists a polynomial p such
that

1f = Dllos + 1f =Pl <e.

Solution 6. First, note that if |f' — p/[(z) < €/2 for all x and if f(0) = p(0), then |f(x) —
plx)| < [J1f(t) — ()] dt < e/2. By Stone-Weierstrass, we can find a polynomial ¢
which satisfies ||¢ — f'||z~ < €/2. Then p(z) = [; q(t) dt 4+ f(0) is a polynomial, satisfies
p(0) = f(0), and ||p’ — f'||z~ < £/2 and therefore satisfies ||f — p||z~ < £/2, solving the
problem.

Exercise 7. Let a = (a,)nen be a sequence of positive real numbers. Prove that the set
X = {(zp)nen € *(N) : z,, € [0,0a,] for all n € N}
is compact in the ¢!(N) norm if and only if (a,)neny € £1(N).

Solution 7. Let’s start with the easy direction. Suppose X is compact. Define a™ € X for
m € N by a™ = 8,<ma,. Then a™ must subsequentially converge to b € X C (!(N), but
b, = a, for all n € N (since a,’ = a, if m; is our subsequence from compactness and j is
sufficiently large), so b = a, and hence a € (}(N).

Now, for the hard direction. When I was taking the quals, I didn’t know what a totally
bounded set was, so I would have proven this by proving any sequence in X has a convergent
subsequence. I am not going to present that argument here, but I invite you to give it a
try. If you get stuck, you could consult the proof that totally bounded and closed sets are
compact.

But now I know what a totally bounded set is, so I will prove it using that. Assume
a € (Y(N). First, note that X is closed. If a™ € X converges to a limit b, then a™ — b,
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for each n € N. Since each a* € [0, a,], it follows that b, € [0, a,] and hence b € X. Now,
let’s prove X is totally bounded. Fix e > 0. Since a € !, there exists N € N such that
Y nen Gn < 5. For each n < N, define a finite collection of reals by, ... bl € [0, a,] such that
the 55 balls around the elements b!, cover [0, a,]. Define the finite collection elements

B = {(b]fl,...,b%N,aNH,aNH,...) 1<, <jpforl1 <n<N}.
Let U denote the collection of e-balls centered at points in B. For any x € X, > _ |z, —
an| < 5. For each n < N, we can find an element b}y within 55 of x,. Then b =
(b, ..., b ant1,anye,...) € B and ||z — b||n < N3& + § < e. Therefore, U covers
X. Since this can be done for any ¢ > 0, we know that X is totally bounded, and because
closed, totally bounded sets are compact, we are done.



