
DAY 15 PROBLEMS AND SOLUTIONS

Exercise 1. For s > 1
2
, let Hs(Rn) denote the Sobolev space

Hs(Rn) = {f ∈ L2(Rn) :

∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dµ(ξ) < ∞}

(where µ is the Lebesgue measure and f̂ is the Fourier transform of f). Show that if
u, v ∈ Hs(Rn) for s > n/2, the uv ∈ Hs(Rn) and

||uv||Hs(Rn) ≤ C||u||Hs(Rn)||v||Hs(Rn)

for a constant C depending only on s and n.

Solution 1. Note that ûv = û ∗ v̂. Then

||uv||2Hs =

∫ (∫
(1 + |ξ|2)s/2û(ξ − η)v̂(η) dη

)2

dξ.

There exists a constant C sufficiently large so that (1 + |ξ|2)s/2 ≤ C((1 + |ξ − η|2)s/2 + (1 +
|η|2)s/2). Plugging this inequality in, we can bound the previous integral above by

C

∫ (∫
(1 + |ξ − η|2)s/2û(ξ − η)v̂(η) +

∫
(1 + |η|2)s/2û(ξ − η)v̂(η) dη

)2

= C||Js/2û∗v̂+û∗Js/2v̂||2L2

where J(a) = 1 + a2. We now see that ||uv||2Hs ≤ C||Js/2û ∗ v̂ + û ∗ Js/2v̂||2L2 , so ||uv||Hs ≤
||Js/2û ∗ v̂ + û ∗ Js/2v̂||L2 ≤ C||Js/2û ∗ v̂||L2 + ||û ∗ Js/2v̂||L2 . By Young’s inequality and the
standard fact that ||v̂||L1 ≤ ||v||Hs if s > n/2, we see that ||Js/2û∗ v̂||L2 ≤ ||Js/2û||L2||v̂||L1 ≤
C||u||Hs||v||Hs . Similarly, ||û ∗Js/2v̂||L2 ≤ C||u||Hs||v||Hs , so all together, we have ||uv||Hs ≤
C||u||Hs||v||Hs , as desired.

Exercise 2. For s > 1
2

let Hs(Rn) denote the Sobolev space

Hs(Rn) = {f ∈ L2(Rn) :

∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dµ(ξ) < +∞}

(where µ is the Lebesgue measure and f̂ is the Fourier transform of f). Use the Fourier
transform to prove that if u ∈ Hs(Rn) for s > n/2, then u ∈ L∞(Rn), wih the bound

||u||L∞ ≤ C||u||Hs(Rn)

for a constant C depending only on s and n.

Solution 2. Recall that ||u||L∞ ≤ ||û||L1 . Let’s write û(ξ) = (1 + |ξ|2)s/2(1 + |ξ|2)−s/2û(ξ).
Then by Hölder’s inequality, if we let C = |(|1+ |ξ|)−s/2||L2 , which is finite because s > n/2,
we see that

||û||L1 ≤ ||(1 + |ξ|2)−s/2||L2||(1 + |ξ|2)s/2û(ξ)||L2 = C||u||Hs(Rn).

Hence, ||u||L∞ ≤ C||u||Hs(Rn), as desired.
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Exercise 3. Let Hs(R) be the Sobolev space on R with the norm

||u||2Hs =

∫
R
(1 + |ξ|2)s|û(ξ)|2 dξ.

Prove that for non-negative real numbers r < s < t, for any ε > 0, there exists C > 0 such
that

||u||Hs ≤ ε||u||Ht + C||u||Hr whenever u ∈ H t(R).

Solution 3. Let’s split up the integral
∫
(1 + |ξ|2)s|û(ξ)|2 dξ into a "large frequency" sub-

domain and a "small frequency" subdomain (this is what you would do to prove that
Ls ⊂ Lt ∩ Lr, which is how I viewed this problem). Let’s call the large frequency do-
main L = {ξ : 1 + |ξ|2 ≥ η} and the small frequency domain S = {ξ : 1 + |ξ|2 < η}.
On L, (1 + |ξ|2)s = (1 + |ξ|2)s−r(1 + |ξ|2)r ≤ ηs−r(1 + |ξ|2)r, so

∫
L
(1 + |ξ|2)s|û(ξ)|2 dξ ≤

ηs−r
∫
L
(1 + |ξ|2)r|û(ξ)|2 dξ ≤ ηs−r||u||2Hr . Taking η sufficiently large, since s − r < 0, we

can get ηs−r < ε2, so
∫
L
(1 + |ξ|2)s|û(ξ)|2 dξ ≤ ε2||u||2Hr . Similarly, we see that

∫
S
(1 +

|ξ|2)t|û(ξ)|2 dξ ≤ ηs−t
∫
S
(1+ |ξ|2)r|û(ξ)|2 dξ ≤ ηs−t||u||2Ht . Putting this together, we see that

||u||2Hs ≤ ε2||u||2Hr + C2||u||2Ht , where C2 = ηs−t. Then ||u||Hs ≤
√
ε||u||2Hr + C||u||2Ht ≤

ε||u||Hr + C||u||Ht , as desired.

Exercise 4. Extra 721 Problem:
Prove that if K is a subset of Rn such that every continuous real-valued function on K is

bounded, then K is compact.

Solution 4. Suppose K is not compact. Then since it is a subset of Rn, it is either not
closed or not bounded. Suppose it is not closed. Take a sequence {xn}∞n=1 converging to
some y ∈ K. Let f(x) = 1

||x−y|| . This is continuous except at y, and in particular on K, but
it is not bounded, since f(xn) → ∞. If K is not bounded, take f(x) = |x| on K. This is
continuous but now bounded because K is not bounded.

Exercise 5. Extra 721 Problem:
Let f : [0, 1] → R be continuous with min0≤x≤1 f(x) = 0. Assume that for all 0 ≤ a ≤ b ≤

1, we have
∫ b

a
[f(x)−mina≤y≤b f(y)] dx ≤ |b−a|

2
. Prove that for all λ ≥ 0, we have

|{x : f(x) > λ+ 1}| ≤ 1
2
|{x : f(x) > λ}|.

Solution 5. Let λ be arbitrary. Since f is continuous, {x : f(x) > λ} is a disjoint union of
intervals I1, I2, . . . . Since {x : f(x) > λ + 1} ⊊ {x : f(x) > λ},

⋃
n∈N(In ∩ {x : f(x) > λ +

1}) = {x : f(x) > λ+1}. Now suppose |In∩{x : f(x) > λ+1}| > |In|/2. Then since f(x) ≥ λ
for x ∈ In,

∫
In
[f(x) −miny∈In f(y)] dx ≥

∫
In
[f(x) − λ] dx ≥ |{x : f(x) > λ + 1}| > |In|/2,

a contradiction. Hence, |In ∩ {x : f(x) > λ + 1}| ≤ |In|/2 for all n. Summing, we see that
|{x : f(x) > λ+ 1} ≤ 1

2
|{x : f(x) > λ}|.

Exercise 6. Extra 721 Problem:
Consider the sequence of function fn : R → R defined by

fn(x) =

∫ n

0

sin(sx)√
s

ds.

(a) Show that fn converges uniformly as n → ∞ on any interval (α, β) for 0 < α < β <
∞.

(b) Show that fn does not converge uniformly on (0, 1] as n → ∞.
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(c) Does fn converge uniformly on [1,∞) as n → ∞?

Solution 6.
(a) To prove that fn converges uniformly on (α,∞), we will prove that∣∣∣∣∫ ∞

N

sin(sx)√
s

ds

∣∣∣∣ ≲α N−1/2.

Integrating by parts in
∫∞
N

sin(sx)√
s

ds gives (up to some absolute constants) 1
x

(
cos(sx)√

s
|∞N +

∫∞
N

cos(sx)

s3/2

)
.

This has magnitude ≲ 1
x
√
N

≲α
1√
N

, as desired. If fn converges on a set U and V ⊂ U ,
then fn converges uniformly on V , so we have uniform convergence on (α, β) as well.

(b) We will prove that for any N ,
∫∞
N

cos(s/N)√
s

ds ≳
√
N . Substituting u = s/N in that

integral gives N
∫∞
1

cos(u)√
Nu

du =
√
N

∫∞
1

cos(u)√
u

du ≳
√
N . It follows that fn(x) does

not converge uniformly on (0, 1].
(c) This is what we proved in (a).

Exercise 7. Extra 721 Problem: For ck ∈ R, say that
∏

k ck convergences if limK→∞
∏K

k=1 ck =
C exists for C ̸= 0,∞.

(a) Prove that if 0 < ak < 1 for all k, or if −1 < ak < 0, for all k, then
∏

k(1 + ak)
converges if and only if

∑
k ak conveges.

(b) However, prove that
∏

k(1 +
(−1)k√

k
) diverges.

Solution 7. Taking the logarithm of both sides, we see that in the given range for ak,
limK→∞

∏K
k=1(1 + ak) = C ∈ (−∞,∞) if and only if limK→∞

∑K
k=1 log(1 + ak) = log(C) ∈

(−∞,∞). Hence, it suffices to prove
∑∞

k=1 log(1 + ak) converges if and only if
∑∞

k=1 ak
converges.

If ak > 0, then log(2)ak < log(1 + ak) < ak, so
∑∞

k=1 log(1 + ak) converges if and only if∑∞
k=1 ak converges.
If ak < 0, note that ak < −1

2
can only happen finitely often if either sum converges.

Removing finitely many terms will not change the convergence of either sum, so we may
assume without loss of generality that ak ≥ −1

2
for all k. Then −2 log(1/2)ak < log(1+ak) <

ak. Again,
∑∞

k=1 log(1 + ak) converges if and only if
∑∞

k=1 ak converges.
For

∏
k=1(1 +

(−1)k√
k
), note that the product converges only if the product∏

j=1

(
1− 1√

2j

)(
1 +

1√
2j + 1

)
=

∏
j=1

(
1 +

√
2j + 1−

√
2j − 1√

2j
√
2j + 1

)
converges. Using the fact that

√
x+ 1 −

√
x ≤ 1

2
√
x
, we see that

√
2j+1−

√
2j−1√

2j
√
2j+1

≤ −1
2(2j+1)

.

But
∑

j
−1

2(2j+1)
certainly does not converge, so neither does

∏
j=1

(
1− 1√

2j

)(
1 + 1√

2j+1

)
,

nor
∏

k=1(1 +
(−1)k√

k
).


