
DAY 14 PROBLEMS

Exercise 1. The following distributions u, v on R2 are defined by pairing with Schwartz
functions via

⟨u, ϕ⟩ =
∫ 2

0

ϕ(0, t) dt

⟨v, ϕ⟩ =
∫ 2

0

ϕ(t, 0) dt

Show that the convolution u∗v can be identified with a finite, absolutely continuous measure
µ. Find g ∈ L1(R2) such that

∫
ϕ dµ =

∫
ϕg dx for all Schwartz functions ϕ.

Solution 1. The primary difficult in this problem for me was remembering what the convo-
lution of two distributions is. In general, if you want to figure out some sort of property for
distributions, go to a different page and see if you can figure out the property assuming your
distribution is a smooth function. Once you get the property for smooth functions, assume
it works for all distributions, then go to the page with the problem and write the property
down without proof like you knew it all along.

In this case, if we imagined u and v to be smooth functions, then applying the usual
convolution formula and changing variables, we get ⟨u ∗ v, ϕ⟩ =

∫
u(x)v(y)ϕ(x + y) dx dy.

This suggests that we should claim ⟨u∗v, ϕ⟩ = ⟨u(x), ⟨v(y), ϕ(x+y)⟩⟩, where ⟨v(y), ϕ(x+y)⟩
is the map x 7→ ⟨v(y), ϕ(x + y)⟩. This is well-defined and characterizes the convolution of
compactly supported distributions - it might not be how one would define the convolution,
but I think you would be justified in immediately writing ⟨u∗v, ϕ⟩ = ⟨u(x), ⟨v(y), ϕ(x+y)⟩⟩.

With this definition in hand, the rest of the problem is fortunately pretty easy. We can
compute ⟨v(y), ϕ(x + y)⟩ =

∫ 2

0
ϕ(t + x1, x2) dt. This is a smooth function of x, call it ψ(x).

Then

⟨u(x), ψ(x)⟩ =
∫ 2

0

ψ(0, s) ds =

∫ 2

0

∫ 2

0

ϕ(t, s) dt dx = ⟨χ[0,2]×[0,2], ϕ⟩.

Hence, ⟨u ∗ v, ϕ⟩ = ⟨g, ϕ⟩, where g(x) = χ[0,2]×[0,2] ∈ L1(R2), and we can identify u ∗ v with
g(x) dx, which is a finite, absolutely continuous measure.

Exercise 2. Let D′(R) denote the space of distributions on R with the weak-∗ topology.
Determine the limit in D′(R) of the sequence of functions in R:

lim
n→∞

√
ne

i
2
nx2

.
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Solution 2. Let un =
√
neinx

2/2. For f ∈ C∞
c (R), we have

⟨ûn, f⟩ = ⟨un, f̂⟩

=

∫ √
neinx

2/2f̂ dx

=

∫ ∫ √
neinx

2/2e−iuxf(u) du dx

=

∫ ∫ √
nein/2(x−u/n)2e−iu2/(2n)f(u) dx du

=

∫ √
neiny

2/2 dy

∫
e−iu2/(4n)f(u) du

=

∫
eiy

2

dy

∫
e−iu2/(4n)f(u) du.

Since f is C∞
c , we can use dominated convergence to conclude the final integral is

∫
f(u) du =

f̂(0). We are treating un as tempered distribution here, which is justified since each un has at
most polynomial growth. For now, let us denote

∫
eiy

2
dy = C. We conclude that ûn → Cδ̂0,

so un → Cδ0. To find the exact value of C, you need to be carefuly about how you normalize
Fourier transform and then compute

∫
eiy

2
dy = (1 + i)

√
π/2. That computation is likely

beyond the scope of the exam (the usual way to do it is contour integration), so I think you
are fine to leave it as a constant.

Exercise 3. A real-valued function f defined on R belongs to the space C1/2(R) if and only
if

sup
x∈R

|f(x)|+ sup
x ̸=y

|f(x)− f(y)|√
|x− y|

<∞.

Prove that a function f ∈ C1/2(R) if and only if there is a constant C so that for every ε > 0,
there is a bounded function ϕ ∈ C∞(R) such that

sup
x∈R

|f(x)− ϕ(x)| ≤ C
√
ε and sup

x∈R

√
ε|ϕ′(x)| ≤ C.

Solution 3. Suppose f ∈ C1/2(R). Let φ be a smooth bump function, symmetric about
the x = 0, supported on [−1, 1], with ||φ(x)||L1 = 1. Let φε(x) = φ(x/ε)

ε
. Note that

φε is supported on [−ε, ε] and ||φε||L1 = 1. Define ϕ = f ∗ φε. Let’s first check that
supx∈R |f(x)− ϕ(x)| ≤ C

√
ε. We see that

|f(x)− ϕ(x)| ≤
∫
R
φε(y)|f(x)− f(x− y)| dy ≤

∫ ε

−ε

φε(y)
√
y dy.

By Hölder’s inequality,
∫ ε

−ε
φε(y)

√
y dy ≤ ||φε||L1||√y||L∞([−ε,ε]) ≤

√
ε.

For the second part, we have ϕ′(x) = 1
ε2

∫∞
−∞ f(x − y)φ′(y/ε) dy. We know that by

the assumption that φ is symmetric that about x = 0 that φ′ is odd, so we can write
this as 1

ε2

∫∞
0
[f(x − y) − f(x + y)]φ′(y/ε) dy. We know φ′(y) is supported on [−ε, ε], so

|f(x− y)− f(x+ y)| ≤
√
2y ≤ C1

√
ε for some C1 > 0. We also have that φ′(y) is uniformly

bounded by some C2 > 0. Then
1

ε2

∫ ∞

0

[f(x− y)− f(x+ y)]φ′(y/ε) dy ≤ 1

ε2

∫ ε

0

C1

√
εC2 dy =

C1C2√
e
.
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Hence, for C = C1C2 |ϕ′(x)| ≤ C√
ε
, as desired.

Now suppose that there is a constant C so that for any ε > 0, we can find ϕ ∈ C∞(R)
such that supx∈R |f(x) − ϕ(x)| ≤ C

√
ε and supx∈R

√
ε|ϕ′(x)| ≤ C. First, let’s prove that

supx∈R |f(x)| is bounded. Take ϕ ∈ C∞(R) with maximum M such that supx∈R |f(x) −
ϕ(x)| < C. Then by the triangle inequality, supx∈R |f(x)| < C + M . Now, let’s prove
supx ̸=y

|f(x)−f(y)|√
|x−y|

< ∞. Take x ̸= y ∈ R, set ε = x − y, and choose ϕ corresponding to that

value of ε. Then
|f(x)− f(y)|

|x− y|
<

|f(x)− ϕ(x)|√
|x− y|

+
|ϕ(x)− ϕ(y)|√

|x− y|
+
|ϕ(y)− f(y)|√

|x− y|
≤ C

ε

|x− y|
+
C|x− y|√
ε|x− y|

+C
ε

|x− y|
= 3C.

Hence, supx ̸=y
|f(x)−f(y)|

|x−y| <∞, so f ∈ C1/2(R).

Exercise 4. Let H1([0, 1]) = {f ∈ L2([0, 1]) : f ′ ∈ L2}, where f ′ denotes the distributional
derivative of f . Equip H1 with the norm ||f ||H1 = ||f ||L2 + ||f ′||L2 .

For α ∈ [0, 1], denote ||f ||Cα = supx∈[0,1] |f(x)| + supx ̸=y∈[0,1]
|f(x)−f(y)|

|x−y|α and Cα([0, 1]) =

{f ∈ C([0, 1]) : ||f ||Cα <∞}.
You may use without proof that H1 and Cα are both Banach spaces.
(1) Prove that H1([0, 1]) ⊂ C1/2([0, 1]).
(2) Prove that the closed unit ball in H1([0, 1]) is compact in Cα([0, 1]) for any α < 1/2.
(3) Is the closed unit ball in H1([0, 1]) compact in C1/2([0, 1])? Prove or give a coun-

terexample.

Solution 4.
(1) Take f ∈ H1([0, 1]). Formally, we want to say that |f(y) − f(x)| = |⟨f, δy − δx⟩| =

|⟨f ′, χ[x,y]⟩| ≤ ||f ′||L2|x− y|1/2 ≤ ||f ||H1 |x− y|1/2. For f ∈ C∞([0, 1]) ⊂ H1([0, 1]), we
see that this is true just using standard facts about distributions (in particular, that
χ′
[x,y] = δy − δx, which follows from the fundamental theorem of calculus). Smooth

functions are dense in H1([0, 1]) (I would suggest on the qual assuming that smooth
functions are dense in every function space, then going back and proving that is the
case if you have time. In this case, it follows fairly easily by an approximation of the
identity argument, you can google it if you are curious), so f ∈ H1, let φn ∈ C∞([0, 1])
be a sequence with φn → f in the H1 norm. It follows that |(φn − f)(y) − (φn −
f)(x)| ≤ ||φn − f ||H1 |x− y|1/2. By the triangle inequality, we see that

|f(y)− f(x)| ≤ |(φn − f)(y)− (φn − f)(x)|+ |φn(y)− φn(x)|
≤ (||φn − f ||H1 + ||φn||H1)|x− y|1/2

→ ||f ||H1 |x− y|1/2

Hence |f(y)−f(x)| ≤ ||f ||H1|x−y|1/2, so supx ̸=y∈[0,1]
|f(x)−f(y)|
|x−y|1/2 ≤ ||f ||H1 . We also see

that f is necessarily continuous, a nice thing not to have to also check and justifying
considering the pointwise behavior of f .

Now suppose supx∈[0,1] |f(x)| > 2||f ||H1 . Then for some x0, f(x0) > 2||f ||H1 . We
know that |f(x0)− f(y)| ≤ ||f ||H1 |x− y|1/2, so |f(y)| > 2||f ||H1 −||f ||H1|x0− y|1/2 ≥
||f ||H1 . Therefore,

∫ 1

0
|f(x)|2 dx > ||f ||2H1 ≥ ||f ||2L2 =

∫ 1

0
|f(x)|2 dx, a contradiction.
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Hence, supx∈[0,1] |f(x)| < 2||f ||H1 , so putting this together, we have f ∈ C1/2([0, 1]),
with ||f ||C1/2([0,1]) ≤ C||f ||H1 for a constant C > 0.

(2) By the previous problem, we know that the unit ball in H1 is contained in the unit
ball in C1/2. We will prove that the C1/2 unit ball B is compact in Cα([0, 1]) for any
α < 1/2. Take fn ∈ B. By Arzela-Ascoli (using the fact that fn ∈ B to obtain both
uniform boundedness and equicontinuity), fn has a uniformly convergent subsequence
fnk

→ g. Since fnk
converges uniformly, it is Cauchy in the sup-norm. We also know

that

sup
x,y∈(0,1)

|(fnk
− fnj

)(x)− (fnk
− fnj

)(y)|
|x− y|α

= sup
x,y∈(0,1)

(
|(fnk

− fnj
)(x)− (fnk

− fnj
)(y)|1/(2α)

|x− y|1/2

)2α

= sup
x,y∈(0,1)

( |(fnk
− fnj

)(x)− (fnk
− fnj

)(y)|
|x− y|1/2

)2α

×

(
sup

x,y∈[0,1]
(|fnk

− fnj
|(x) + |fnk

− fnj
|(y))

)1−2α

≤ C||fnk
− fnj

||1−2α
sup

Therefore, fnk
is Cauchy in the Cα norm, so since Cα is complete, fnk

converges in
Cα, as desired.

(3) It is not. For a counterexample, suppose fn is a triangle with base of width 2n−2

centered at the origin and height n−1. Then f ′
n (distributionally) is n(χ[−n−2,0] −

χ[0,n−2]), which is bounded in L2 (f itself goes to 0 in L2). So fn is a bounded
sequence in H1. On the other hand, if m > n, ||fn − fm||Cα ≳ 1, so fn cannot have a
convergent sequence in Cα. AN: I know this is vague - I’ll try to fill it in with more
detail later

Exercise 5. Extra 721 Problem:
Show that there is no sequence {an}n∈N of positive numbers such that

∑
n∈N an|cn| < ∞

if and only if cn is bounded.
Hint: Suppose such a sequence exists and consider the map T : ℓ∞(N) → ℓ1(N) given by

[Tf ]n = anf(n). The set of f such that f(n) = 0 for all but finitely many n is dense in ℓ1

but not in ℓ∞.

Solution 5. Suppose such a sequence exists and define T as in the problem. Then by
the uniform boundedness principle, T : ℓ∞(N) → ℓ1(N) is continuous. It also maps the
set A = {{an}∞n=0 : an = 0 for all but finitely many n} bijectively to itself. Finally, it
is surjective, since if {bn} ∈ ℓ1(N) but {bn/an} is unbounded, then

∑
n bn/anan cannot

converge, and hence we must have that {bn/an} is bounded. Then it is an open mapping, by
the open mapping theorem. Take an open set O ⊂ ℓ∞(N) not intersecting A (for example,
O = {{xn} : xn > 1 for all n}). Then T (O) is open in ℓ1(N), so it must intersect K, and
hence there exists x ∈ ℓ∞(N) \K such that T (x) ∈ K, which is a contradiction, since T (x)
has the same number of zero entries as x.

Exercise 6. Extra 721 Problem:
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Let C([0, 1]) denote the set of continuous functions on [0, 1] equipped with the sup-norm.
Prove that there exists a dense subset of C([0, 1]) consisting of functions are nowhere differ-
entiable.

Solution 6. Define An = {f : there exists x ∈ [0, 1] such that |f(x) − f(y)| ≤ n|x −
y| for all y ∈ [0, 1]}. Let’s prove that An is closed and nowhere dense. Let fm be a sequence
in An converging to some f . Let xm be a point such that |fm(xm)− fm(y)| ≤ n|xm − y| for
all y ∈ [0, 1]. Since xm is a bounded sequence, it has a convergent subsequence xmj

→ x.
Then |f(x)− f(y)| = limj→∞ |fmj

(xmj
)− fmj

(y)| ≤ limj→∞ n|xmj
− y| = n|x− y|, so f ∈ An

and hence An is closed. Suppose f ∈ An. Fix ε > 0. There exists δ such that for all
|h| < δ, |f(x+ h)− f(x)| < ε. Let g(y) be a continuous function from [0, 1] to [−ε, ε] which
is −ε at x and ε at x + c, where c is sufficiently large that c < min (δ, 1− x, ε/(2n)). Set
fε(y) = f(y) + g(y). Then |fε − f | = |g| < ε and

|fε(x)− fε(x+ c)| = |f(x)− f(x+ c) + 2ε| ≥ |2ε− ε| = ε.

Then |fε(x) − fε(x + c)| ≥ ε > nc, so fε /∈ An. It follows that An has empty interior. The
intersection of Ac

n is an intersection of open dense sets, so it is residual and, in particular,
non-empty. Suppose f in that intersection and f is differentiable at some point x with
derivative α. Set k = ⌈2α⌉. Then there exists some δ > 0 such that for y ∈ (x − δ, x + δ),
|f(y) − f(x)| ≤ k|x − y|. The function y 7→ |f(y)−f(x)|

δ
is continuous on the compact set

[0, 1] \ (x − δ, x + δ) and hence achieves some maximum ≤ m. Set n = max(k,m). We
know |f(y) − f(x)| ≤ k|x − y| ≤ n|x − y|. Since |f(y)−f(x)|

δ
≤ m ≤ n for y ∈ [0, 1] \ (x −

δ, x+ δ), |f(y)− f(x)| ≤ nδ ≤ n|x− y|. Then f ∈ An, a contradiction. Thus, f is nowhere
differentiable, as required.

Exercise 7. Extra 721 Problem:
Let H be a Hilbert space. For a linear space Y ⊂ H, define Y ⊥ = {x ∈ H : (x, y) = 0}.
(1) Prove that if Y is closed, then Y ⊥ is a closed linear subspace of H.
(2) Prove that for any x ∈ H, a minimizing sequence for infy∈Y |x− y| is Cauchy. Con-

clude that we can uniquely write x = x|| + x⊥ with x|| ∈ Y and x⊥ ∈ Y ⊥.
(3) Prove that if f : H → R is bounded and linear, then there exists y ∈ H such that

f(x) = (x, y) for all x.

Solution 7.
(1) Take a convergent sequence yn → y with yn ∈ Y ⊥ for all n. Then (y, x) =

limn→∞(yn, x) = 0 for any x ∈ Y . Hence, Y ⊥ is closed. For any α ∈ R and x, y ∈ Y ⊥

and all z ∈ Y , (αx+ y, z) = α(x, z) + (y, z) = 0. Therefore, Y ⊥ is a vector space.
(2) Let xn be a minimizing sequence for d = infx∈Y ||x−y||H , that is limn→∞ ||xn−y||H =

infx∈Y |x − y| and xn ∈ Y for all n (I switched the letter’s around when I wrote
the solution, sorry). Let’s prove this is Cauchy. We have that ||xn − xm||2H =
||xn||2+ ||xm||2−2⟨xn, xm⟩. We somehow have to use that ||xn−y||2H is a minimizing
sequence to make 2⟨xn, xm⟩ → ||xn||2H + ||xm||2H . Since ||xn − xm||2H ≥ 0, we know
||xn||2H + ||xm||2H ≥ 2⟨xn, xm⟩, we will prove that in the limit, the opposite inequality
holds as well. We can make this pop out by computing the distance between xn+xm
and y:

||xn + xm
2

− y||2H =
||xn||2H

4
+

||xm||2H
4

+
⟨xn, xm⟩

2
+ ||y||2H − ⟨xn, y⟩ − ⟨xm, y⟩.
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On the other hand, for any ε > 0, we can choose N sufficiently large such that
for any n,m ≥ N , ||xn − y||2 ≤ d2 + ε ≤ ||xn+xm

2
− y||2H + ε. Then ||xn−y||2

2
+

||xm−y||2
2

≤ ||xn+xm

2
− y||2H + ε. Expanding both sides and simplifying, we see that

4ε+ 2⟨xn, xm⟩ ≥ ||xn||2 + ||xm||2. The sending ε→ 0 and using the fact from before
that ||xn||2H + ||xm||2H ≥ 2⟨xn, xm⟩ for all n,m, we see that ||xn − xm||2H → 0, and
hence xn is Cauchy. Denote it’s limit by x||.

Since each xn ∈ Y and Y is closed, x|| ∈ Y . Let x⊥ = y − x||. Take z ∈ Y . We
have that at t = 0, d

dt
||y − x|| + tz||2H = 2⟨y, z⟩ − 2⟨x||, z⟩ = 0, since the minimum

of ||y − x|| + tz||2H is at 0. It follows that ⟨y − x||, z⟩ = 0, so ⟨x⊥, z⟩ = 0. Hence,
x⊥ ∈ Y ⊥.

To see that the decomposition is unique, suppose we can find a pair x0 ∈ Y ,
x1 ∈ Y ⊥ such that x0 + x1 = y. Then x0 − x|| = x1 − x⊥ ∈ Y ∩ Y ⊥. But if
z ∈ Y ∩ Y ⊥, then (z, z) = 0, so z = 0 and hence, x0 = x||, x1 = x⊥. Thus, we have
uniqueness.

(3) If f ≡ 0, then we can take y = 0. Otherwise, let Y = ker(f). Since f ̸= 0,
Y ̸= H, so there exists ỹ ̸= 0 ∈ Y ⊥. It follows from the last problem that Y ∩ Y ⊥ =
{0}, so for x1, x2 ∈ Y ⊥, f(x1), f(x2) ̸= 0. Then we can find α ̸= 0 such that
αf(x1) + f(x2) = f(αx1 + x2) = 0, and hence αx1 + x2 ∈ Y ∩ Y ⊥, so αx1 + x2 = 0.
Since Y ⊥ therefore cannot contain a pair of linearly independent vectors, we have
dim(Y ⊥) = 1. So take some element y ∈ Y ⊥. Then there exists α ̸= 0 such that
f(y) = α, so f(y) = α

||y||2 (y, y). Set ỹ = αy
||y||2 , so that f(y) = (y, ỹ). For all x ∈ Y ⊥,

x = βy for some β ̸= 0, so
f(x) = f(βy) = βf(y) = β(y, ỹ) = (βy, ỹ) = (x, ỹ).

For general x ∈ H, we use the previous problem to write x = x|| + x⊥, with x⊥ ∈ Y ⊥

and x|| ∈ Y . Then f(x|| + x⊥) = f(x⊥) = (x⊥, ỹ) = (x⊥ + x||, ỹ), using the fact that
(y, x||) = 0 and x|| ∈ ker(f).


