DAY 13 PROBLEMS AND SOLUTIONS

Exercise 1. Suppose g, € S(R?) and lim, . ||gn||z2(R?) = 0. Show that there are f, €
C?(R?) such that Af, = f, + g, and f, satisfies

(2) Timy, o0 |02, (f) |22y = 0.

Solution 1. Before we prove the properties, let’s solve the equation Af,, = f, + g,. Take

the Fourier transform of both sides. Hopefully you recall that Zﬁ(f) = —|€[2n(€), so the
desired equation becomes €| f,(£) + fu(§) = —g(&), or in other words, f, = —f’i‘(é)g- Since

gn is Schwartz, fn is Schwartz as well, and hence it’s Fourier inverse f,, is a Schwartz function
and hence in C2. By construction, these functions f,, satisfy Af, = fn + gn.

(1) Let C = Hﬁ“Lz(RZ). Then

. ) ) 1
(0) = — lo'égn—@d — _/ gn<€> dr < An ol ———||;2 = C An o =C nll7,2-
Fu0) = = [ e B o = — [ B do <1l gles = il = Cllals

Since ||gnl|zz = 0, fn.(0) = 0 as well.
(2) By Plancheral’s theorem,

; §i&a .
1102, 2, fall 22y = ||€1&afull 22y = e n EP%HB(R%

By Hélder’s inequality,
§162

22 g <
||1 ‘l‘ |€|29n||L2(R2) — ||

§1&e

SIS
1+ ¢ T

14+ |€|2||L°°(R2)||gn||L2(R2)-

| oo ®2) |G| | L2 w2y = ||

Since (£, —&)? > 0, £ +&5 > 2£,&,, and hence 1+££1%£i§§ < 1. Thus, ||%||LW(R2) <1,

50 ||02 ., [allr2r2y < [|gnllz2. Since ||gnl[r2 = 0, |02 4, fallL2®2) — 0 as well.

T1T2

Exercise 2. Show that for a # 0,

1§: a e+
anooa2+n2_62m—1'

Hint: Apply the Poisson summation formula to the function f(z) = e~ for an appropriate

choice of c.
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—2mclz| (

Solution 2. First, let’s compute the Fourier transform of f.(z) = e using 27c instead

of ¢ will be convenient for what comes next). We see that

fA(g) :/6—27rix§€—27rcx| dr

00 0
:/ 6—271'3:(1'5—4—0) dCL’—l-/ 6—27rm(27ri§—c) dr
0

—0o0

1 1 1
:%(z'uc_z‘g—c)
_1 c
YN

This looks pretty promising. The Poisson summation formula tells us that

1
Z el = P Z n2 _Ci_ 2

nez nez
Let’s set ¢ = o and prove that ) ., e2melnl — zz:% To do so, we will break up the sum
and then apply the geometric series formula:
o0 —
26_27"‘1|”| — 226—27@71_ 1 = L — 1= 1—|—€ e — 62770‘4_1.
= — 1 — 6727ra 1— 6727ra 627ra —1

Exercise 3. Find the Fourier transform of the following function: f € R2:
fla) = ez — ol

Solution 3. First, let’s suppose £ = xo = 0. Then since f is a radial function homogenous
of degree —1, f is radial and homogenous of degree (—2 — (—1)) = —1. Since every radial,
homogenous function of degree m function is C|z|™ for some constant C|, it follows that
f &) = % We can find the constant by computing

1 —= 1 2 C 2
1 ey ey (& ley
<|JZ|76 > <|£L‘|’€ > <|§|,6 >

We can compute that the Fourier transform of e~ l6” is \/7?6_”2’3 , SO

—

2,2

e_ﬂ' T e_‘ﬂg
VT dr = (J/ e
2 7] Rz [€]

77\'2‘% *12 . .
Changing variables, we see that /7 [ eT dr = /7[5 e|T| dzx (the scale invariance seen

here is a property of the scale invariant differential term % = dlog(z)). Hence, C' = /7.

Exercise 4. Find the spectrum of the linear operator A in L*(R) defined as
L))
A = ——— dy.
(A49)(@) /_oo 1+ (x—y)? Y

(The spectrum of a linear operator T is the closure of the set of all complex numbers A such
that the operator T — Al does not have a bounded inverse. Hint: it may be helpful to find
Fourier transform of 1/(1 + z2).)
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Solution 4. Let’s start with the hint. We will prove that the Fourier transform of ; HQ
is me~1*l. Tt is not too hard to check that this is correct by Fourier inverting me~* and
splitting up the domain of the resulting integral, but actually coming up with that on your
own would be tricky. Here is one approach. Let g(¢) denote the Fourier transform of
ﬁ. Differentiating under the integral, we see that g—;g(ﬁ) = —1 4 g(&). Of course, 1
only makes sense as a distribution, but with a bit of distribution theory and the fact that
[ f(x) dz = f(0), we see that it is do: for any h € C=(R), (1,h) = (1,h) = f(0) = £(0).
Now we have a differential equation, which does something weird at 0, but on (—o0,0)
and (0, 00), we should be able to solve this as one normally would (which for me means plug
in e® and hope a solution falls out). In thise case, we are in luck: we see that any solution
must be of the form Ce® for a = £1. Since - € L'(R) and the Fourier transform of an
L' function is in Cy(R), we know that we must have a = 1 on (—00,0) and a = —1 on (0, 00)
for g to have good decay at co. For g to be continuous at 0, we must have the same constant
factor throughout, which must equal ¢g(0). It is straightforward to compute that ¢g(0) = ,

e ¢ E>0
met £<0

Now that we have that out of the way, we return to the actual problem. Note that
Af = f * h, where h(z) = 125. Then Af = fh = me ol so (Af — Af)" = (me7ll — M) f.
Then if A — M has an inverse Gy : L? — L2, then if Gf is well defined, it must equal
—L—f. If A\ ¢ [0, 7], then by Holder’s inequality and Plancheral, ||G'f||2 < el 1z

Then Gf is bounded L? — L2, so by Plancheral again, Gf is as well. Note that Af = re~1el f
has non-trivial kernel, since any f with f L me~# will be sent to 0, so Af has the same
non-trivial kernel, and hence 0 € spec(A).

Finally, we will check that (0,7] € spec(A). Take A € (0,7] and choose zy such that
me~1?0l = X (there usually will be two such values, choose one). Take f € L? such that

f= Xlwo— 1x0+1] If Gf is bounded L? — L2, then W’*‘ﬁﬂ(m) € L%, or in other words,

fxoﬂ —r— do < 0o, which would imply that |re 1l — A| > |2 —20['/? as # — 0. But by

zo—1 |me~ |I| =2
the mean value theorem, we know that [re™1*l — \| = |re™1#l — re~lvol| < |z — 2| < |2 —10]"/2
as * — xo. Therefore, G f cannot be bounded L? — L? and hence neither can G f. It follows
that A\ € specA, and since A € (0, 7] was arbitrary, we see that (0,7] C spec(A). Putting
this all together, we conclude that spec(A) = [0, 7.

and we are left with g(&) = = me Il

Exercise 5. Extra 721 Problem: For n > 2 an integer, define F'(n) to be the function
F(n) = max{k € Z : 2 /k < n}. Does S>>, 275 converge?

Solution 5. We will write

o0

ZQQ_F(TL) - Z Z 2=k | = ;#{n : F(n) _ k}2_k.

k=2 \n:F(n)=k

So we need to estimate # Ay, where Ay = {n: F(n) = k}. For n € Z, n € Ay if and only if
% <n k +1 Then #A; ~ %:: — %, since the number of integers in an interval is within
2 of the length of the interval. Tt follows that Y .°, #{n: F(n) = k}2 "~ Y7, 25 —¢. If

this converged, then we could rearrange it to .-, kl

5 — 5+ 2neo 77 The former series is
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a telescoping sum converging to 1 and the latter diverges, but the sum of a convergent and
a divergent sum cannot converge, so Zzo 9 k2 L cannot converge and hence neither can

S, #{n: F(n) = k}27% nor > °7 ”)H '

Exercise 6. Extra 721 Problem: For a,,b, sequence in (*(N), prove that

oo o0

2.

k=1 n:1

[101]2-

Solution 6. For m € N, let I, = {n € N: 2™~ <n < 2m}. Write

1 an,b anb
nVk nVk
PO DR e D DID Dl
k=1 n=1 m1,maENXN (n7k)elm1 ><Im2 m1,m2ENXN (nJc)eIml ><Im2
mi>mo m1<mg
We will prove Y myENxN 2o (1 k)€ Ty X Ty fl’f’g < C||an||52||b ||¢2, the other sum will follow
m1>meo
similarly. If my > my, for (n, k) € Ly, X Iy, —5 ~ 27"™. It follows by Fubini’s theorem
Z(n k:)elmlxlm2 ‘::fg < 2” m1||anH41(Im1 O] o2 (Imgy)- By Holder’s inequality and the fact that
#1,, , we have
27" |an ez, 1Baller (1) < 27722 @ 21,0, bul |21,

Using Holder’s inequality and Fubini-Tonelli, we see that

anbk —(m1—m2)/2
> D S 3 T a gy, lIbd e,

m1,m2ENXN (n, k)e[m1 X Img mi>me
mi>mo

1/2
< ( 2 2<m1m2>/2|1anr|§2um>> ( 2 2l

mi>mo mi1>me

< Cllan] 2 |bn |2y

To see the final inequality, we sum first in the variable which is only in the power of 2. No mat-
ter than value of the other variable, the sum is always bounded above by ¢ = "> | V2 <

1/2
co. What is left is then bounded above by c¢!'/2 (ZmleN ||an||§2(1m1)> = c?||an||ew), as
desired. This completes the problem.

Exercise 7. Fxtra 721 Problem: Let x, be a sequence in a Hilbert space H. Suppose that
x, converges weakly to x as N — oco. Prove that there is a subsequence z,, such that

N
N7t g T
ny
k=1

converges in norm to x

) 1/2
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Solution 7. Recall that if z,, converges to x weakly and ||z,|| — ||z||, then x,, — x, since
\|zn — 2|| = (2p — 2,2, — 2) = ||20]|* + ||2||* — 2(x,,, z). For any subsequence z,,, by the
standard Césaro sum proof,

N

1 — 1
<N;mnk,h> = Nz<x”k’h> — (x, h)

k=1
1 N 2 )
¥ Xkt T || = [|7|[°. We can

2
1 N 1 N
to & D oret (N > j:1<xnk,xnj>>. We can find a subsequence z,,, so

for all h, so it suffices to find a subsequence x,, so that

N
’% Zkzl Ly,
that for j > Vk, (n,,Zn,) — (Tn,,7) < %. Note that since z,, converges weakly, ||z,|[* is
bounded by some b, and hence (z,,, z,,) < b* for all n,m. Then

expand

N N N

lem [ 1 , 1 1 X
N; (N ;(xnkaInJ>> —||z[]* = N Z (N Z<$nk,$n].> - <J}nk,x)>—|—ﬁ Z(@nk,@_(%@)

k=1 j=1 k=1
The latter term decays to 0 since it is the Cesaro sum of a sequence that converges to 0. For
the first term,

N vk N N
Z<$nk7xw> - <xnkvx> < Z(mnk’xnj> - <$nk’x> + Z <xnk7$nj> - <x7’lk7$> < \/Eb2+?'
=t 7=1 j=VE+1

Then

1L 1
~ ; (N;<$nm$nj> - <$nkax>>

As N — oo, the final sum goes to 0, completing the proof.



