
DAY 13 PROBLEMS AND SOLUTIONS

Exercise 1. Suppose gn ∈ S(R2) and limn→∞ ||gn||L2(R2) = 0. Show that there are fn ∈
C2(R2) such that ∆fn = fn + gn and fn satisfies

(1) limn→∞ fn(0, 0) = 0.
(2) limn→∞ ||∂2

x1x2
(fn)||L2(R2) = 0.

Solution 1. Before we prove the properties, let’s solve the equation ∆fn = fn + gn. Take
the Fourier transform of both sides. Hopefully you recall that ∆̂fn(ξ) = −|ξ|2f̂n(ξ), so the
desired equation becomes |ξ|2f̂n(ξ) + f̂n(ξ) = −ĝ(ξ), or in other words, f̂n = − ĝn(ξ)

1+|ξ|2 . Since
gn is Schwartz, f̂n is Schwartz as well, and hence it’s Fourier inverse fn is a Schwartz function
and hence in C2. By construction, these functions fn satisfy ∆fn = fn + gn.

(1) Let C = || 1
1+|ξ|2 ||L2(R2). Then

fn(0) = −
∫

ei0·ξ
ĝn(ξ)

1 + |ξ|2
dx = −

∫
ĝn(ξ)

1 + |ξ|2
dx ≤ ||ĝn||L2|| 1

1 + |ξ|2
||L2 = C||ĝn||L2 = C||gn||L2 .

Since ||gn||L2 → 0, fn(0) → 0 as well.
(2) By Plancheral’s theorem,

||∂2
x1x2

fn||L2(R2) = ||ξ1ξ2f̂n||L2(R2) = || ξ1ξ2
1 + |ξ|2

ĝn||L2(R2)

By Hölder’s inequality,

|| ξ1ξ2
1 + |ξ|2

ĝn||L2(R2) ≤ || ξ1ξ2
1 + |ξ|2

||L∞(R2)||ĝn||L2(R2) = || ξ1ξ2
1 + |ξ|2

||L∞(R2)||gn||L2(R2).

Since (ξ1−ξ2)
2 ≥ 0, ξ21+ξ22 ≥ 2ξ1ξ2, and hence ξ1ξ2

1+ξ21+ξ22
< 1. Thus, || ξ1ξ2

1+|ξ|2 ||L∞(R2) < 1,
so ||∂2

x1x2
fn||L2(R2) ≤ ||gn||L2 . Since ||gn||L2 → 0, ||∂2

x1x2
fn||L2(R2) → 0 as well.

Exercise 2. Show that for α ̸= 0,

1

π

∞∑
n=−∞

α

α2 + n2
=

e2πα + 1

e2πα − 1
.

Hint: Apply the Poisson summation formula to the function f(x) = e−c|x|, for an appropriate
choice of c.
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Solution 2. First, let’s compute the Fourier transform of fc(x) = e−2πc|x| (using 2πc instead
of c will be convenient for what comes next). We see that

f̂(ξ) =

∫
e−2πixξe−2πc|x| dx

=

∫ ∞

0

e−2πx(iξ+c) dx+

∫ 0

−∞
e−2πx(2πiξ−c) dx

=
1

2π

(
1

iξ + c
− 1

iξ − c

)
=

1

π

c

ξ2 + c2

This looks pretty promising. The Poisson summation formula tells us that∑
n∈Z

e−2πc|n| =
1

π

∑
n∈Z

c

n2 + c2
.

Let’s set c = α and prove that
∑

n∈Z e
−2πα|n| = e2πα+1

e2πα−1
. To do so, we will break up the sum

and then apply the geometric series formula:∑
n∈Z

e−2πα|n| = 2
∞∑
n=0

e−2παn − 1 =
2

1− e−2πα
− 1 =

1 + e−2πα

1− e−2πα
=

e2πα + 1

e2πα − 1
.

Exercise 3. Find the Fourier transform of the following function: f ∈ R2:

f(x) = eixξ0|x− x0|−1.

Solution 3. First, let’s suppose ξ0 = x0 = 0. Then since f is a radial function homogenous
of degree −1, f̂ is radial and homogenous of degree (−2 − (−1)) = −1. Since every radial,
homogenous function of degree m function is C|x|m for some constant C, it follows that
f̂(ξ) = C

|ξ| . We can find the constant by computing

⟨ 1

|x|
, ê−|ξ|2⟩ = ⟨ 1̂

|x|
, e−|ξ|2⟩ = ⟨ C

|ξ|
, e−|ξ|2⟩.

We can compute that the Fourier transform of e−|ξ|2 is
√
πe−π2x2 , so

√
π

∫
R2

e−π2x2

|x|
dx = C

∫
R2

e−|ξ|2

|ξ|
dξ.

Changing variables, we see that
√
π
∫
R2

e−π2x2

|x| dx =
√
π
∫
R2

e−x2

|x| dx (the scale invariance seen
here is a property of the scale invariant differential term dx

x
= d log(x)). Hence, C =

√
π.

Exercise 4. Find the spectrum of the linear operator A in L2(R) defined as

(Af)(x) =

∫ ∞

−∞

f(y)

1 + (x− y)2
dy.

(The spectrum of a linear operator T is the closure of the set of all complex numbers λ such
that the operator T − λI does not have a bounded inverse. Hint: it may be helpful to find
Fourier transform of 1/(1 + x2).)
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Solution 4. Let’s start with the hint. We will prove that the Fourier transform of 1
1+x2

is πe−|x|. It is not too hard to check that this is correct by Fourier inverting πe−|x| and
splitting up the domain of the resulting integral, but actually coming up with that on your
own would be tricky. Here is one approach. Let g(ξ) denote the Fourier transform of

1
1+x2 . Differentiating under the integral, we see that ∂2

∂ξ2
g(ξ) = −1̂ + g(ξ). Of course, 1̂

only makes sense as a distribution, but with a bit of distribution theory and the fact that∫
f(x) dx = f̌(0), we see that it is δ0: for any h ∈ C∞

c (R), (1̂, h) = (1, ĥ) =
ˇ̂
f(0) = f(0).

Now we have a differential equation, which does something weird at 0, but on (−∞, 0)
and (0,∞), we should be able to solve this as one normally would (which for me means plug
in eaξ and hope a solution falls out). In thise case, we are in luck: we see that any solution
must be of the form Ceaξ for a = ±1. Since 1

1+x2 ∈ L1(R) and the Fourier transform of an
L1 function is in C0(R), we know that we must have a = 1 on (−∞, 0) and a = −1 on (0,∞)
for g to have good decay at ∞. For g to be continuous at 0, we must have the same constant
factor throughout, which must equal g(0). It is straightforward to compute that g(0) = π,

and we are left with g(ξ) =

{
πe−ξ ξ ≥ 0

πeξ ξ < 0
= πe−|ξ|.

Now that we have that out of the way, we return to the actual problem. Note that
Af = f ∗ h, where h(x) = 1

1+x2 . Then Âf = f̂ ĥ = πe−|x|f̂ , so (Af − λf )̂ = (πe−|x| − λ)f̂ .
Then if A − λI has an inverse Gλ : L2 → L2, then if Ĝf is well defined, it must equal

1
πe−|x|−λ

f̂ . If λ /∈ [0, π], then by Hölder’s inequality and Plancheral, ||Ĝf ||L2 ≤ 1
|λ|+π

||f ||L2 .
Then Ĝf is bounded L2 → L2, so by Plancheral again, Gf is as well. Note that Âf = πe−|x|f̂
has non-trivial kernel, since any f with f̂ ⊥ πe−|x| will be sent to 0, so Af has the same
non-trivial kernel, and hence 0 ∈ spec(A).

Finally, we will check that (0, π] ∈ spec(A). Take λ ∈ (0, π] and choose x0 such that
πe−|x0| = λ (there usually will be two such values, choose one). Take f ∈ L2 such that
f̂ = χ[x0−1,x0+1]. If Ĝf is bounded L2 → L2, then χ[x0−1,x0+1](x)

πe−|x|−λ
∈ L2, or in other words,∫ x0+1

x0−1
1

|πe−|x|−λ|2 dx < ∞, which would imply that |πe−|x|−λ| ≳ |x−x0|1/2 as x → x0. But by
the mean value theorem, we know that |πe−|x|−λ| = |πe−|x|−πe−|x0|| ≲ |x−x0| ≪ |x−x0|1/2
as x → x0. Therefore, Ĝf cannot be bounded L2 → L2 and hence neither can Gf . It follows
that λ ∈ specA, and since λ ∈ (0, π] was arbitrary, we see that (0, π] ⊂ spec(A). Putting
this all together, we conclude that spec(A) = [0, π].

Exercise 5. Extra 721 Problem: For n ≥ 2 an integer, define F (n) to be the function
F (n) = max{k ∈ Z : 2k/k ≤ n}. Does

∑∞
n=2 2

−F (n) converge?

Solution 5. We will write
∞∑
n=2

2−F (n) =
∞∑
k=2

 ∑
n:F (n)=k

2−k

 =
∞∑
k=2

#{n : F (n) = k}2−k.

So we need to estimate #Ak, where Ak = {n : F (n) = k}. For n ∈ Z, n ∈ Ak if and only if
2k

k
≤ n < 2k+1

k+1
. Then #Ak ≈ 2k+1

k+1
− 2k

k
, since the number of integers in an interval is within

2 of the length of the interval. It follows that
∑∞

k=2#{n : F (n) = k}2−k ≈
∑∞

k=2
2

k+1
− 1

k
. If

this converged, then we could rearrange it to
∑∞

k=2
1

k+1
− 1

k
+
∑∞

k=2
1

k+1
. The former series is
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a telescoping sum converging to 1 and the latter diverges, but the sum of a convergent and
a divergent sum cannot converge, so

∑∞
k=2

2
k+1

− 1
k

cannot converge and hence neither can∑∞
k=2#{n : F (n) = k}2−k, nor

∑∞
n=2 2

−F (n).

Exercise 6. Extra 721 Problem: For an, bn sequence in ℓ2(N), prove that

∞∑
k=1

∞∑
n=1

anbk
n+ k

≤ C||a||2||b||2.

Solution 6. For m ∈ N, let Im = {n ∈ N : 2m−1 ≤ n ≤ 2m}. Write

∞∑
k=1

∞∑
n=1

anbk
n+ k

=
∑

m1,m2∈N×N
m1≥m2

∑
(n,k)∈Im1×Im2

anbk
n+ k

+
∑

m1,m2∈N×N
m1<m2

∑
(n,k)∈Im1×Im2

anbk
n+ k

.

We will prove
∑

m1,m2∈N×N
m1≥m2

∑
(n,k)∈Im1×Im2

anbk
n+k

≤ C||an||ℓ2||bn||ℓ2 , the other sum will follow

similarly. If m1 ≥ m2, for (n, k) ∈ Im1 × Im2 ,
1

n+k
≈ 2−m1 . It follows by Fubini’s theorem∑

(n,k)∈Im1×Im2

anbk
n+k

≤ 2−m1||an||ℓ1(Im1 )
||bn||ℓ1(Im2 )

. By Hölder’s inequality and the fact that
#Im = 2m, we have

2−m1||an||ℓ1(Im1 )
||bn||ℓ1(Im2 )

≤ 2−(m1−m2)/2||an||ℓ2(Im1 )
||bn||ℓ2(Im2 )

.

Using Hölder’s inequality and Fubini-Tonelli, we see that∑
m1,m2∈N×N

m1≥m2

∑
(n,k)∈Im1×Im2

anbk
n+ k

≤
∑

m1≥m2

2−(m1−m2)/2||an||ℓ2(Im1 )
||bn||ℓ2(Im2 )

≤

( ∑
m1≥m2

2−(m1−m2)/2||an||2ℓ2(Im1 )

)1/2( ∑
m1≥m2

2−(m1−m2)/2||bn||2ℓ2(Im2 )

)1/2

≤ C||an||ℓ2(N)||bn||ℓ2(N)

To see the final inequality, we sum first in the variable which is only in the power of 2. No mat-
ter than value of the other variable, the sum is always bounded above by c =

∑∞
n=1

√
2
−n

<

∞. What is left is then bounded above by c1/2
(∑

m1∈N ||an||
2
ℓ2(Im1 )

)1/2
= c1/2||an||ℓ2(N), as

desired. This completes the problem.

Exercise 7. Extra 721 Problem: Let xn be a sequence in a Hilbert space H. Suppose that
xn converges weakly to x as N → ∞. Prove that there is a subsequence xnk

such that

N−1

N∑
k=1

xnk

converges in norm to x
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Solution 7. Recall that if xn converges to x weakly and ||xn|| → ||x||, then xn → x, since
||xn − x|| = ⟨xn − x, xn − x⟩ = ||xn||2 + ||x||2 − 2⟨xn, x⟩. For any subsequence xnk

, by the
standard Césaro sum proof,〈

1

N

N∑
k=1

xnk
, h

〉
=

1

N

N∑
k=1

⟨xnk
, h⟩ → ⟨x, h⟩

for all h, so it suffices to find a subsequence xnk
so that

∣∣∣∣∣∣ 1N ∑N
k=1 xnk

∣∣∣∣∣∣2 → ||x||2. We can

expand
∣∣∣∣∣∣ 1N ∑N

k=1 xnk

∣∣∣∣∣∣2 to 1
N

∑N
k=1

(
1
N

∑N
j=1⟨xnk

, xnj
⟩
)
. We can find a subsequence xnk

so

that for j ≥
√
k, ⟨xnk

, xnj
⟩ − ⟨xnk

, x⟩ ≤ 1
k
. Note that since xn converges weakly, ||xn||2 is

bounded by some b, and hence ⟨xn, xm⟩ ≤ b2 for all n,m. Then

1

N

N∑
k=1

(
1

N

N∑
j=1

⟨xnk
, xnj

⟩

)
−||x||2 = 1

N

N∑
k=1

(
1

N

N∑
j=1

⟨xnk
, xnj

⟩ − ⟨xnk
, x⟩

)
+

1

N

N∑
k=1

(⟨xnk
, x⟩−⟨x, x⟩)

The latter term decays to 0 since it is the Cesaro sum of a sequence that converges to 0. For
the first term,∣∣∣∣∣

N∑
j=1

⟨xnk
, xnj

⟩ − ⟨xnk
, x⟩

∣∣∣∣∣ ≤
∣∣∣∣∣∣
√
k∑

j=1

⟨xnk
, xnj

⟩ − ⟨xnk
, x⟩

∣∣∣∣∣∣+
∣∣∣∣∣∣

N∑
j=

√
k+1

⟨xnk
, xnj

⟩ − ⟨xnk
, x⟩

∣∣∣∣∣∣ ≤ √
kb2+

N

k
.

Then ∣∣∣∣∣ 1N
N∑
k=1

(
1

N

N∑
j=1

⟨xnk
, xnj

⟩ − ⟨xnk
, x⟩

)∣∣∣∣∣ ≤ 1

N

N∑
k=1

√
kb2

N
+

1

k
.

As N → ∞, the final sum goes to 0, completing the proof.


