
DAY 12 PROBLEMS AND SOLUTIONS

Exercise 1. Prove that there is a distribution u ∈ D′(R) so that its restriction to (0,∞) is
given by

⟨u, f⟩ =
∫ ∞

0

x−2 cos(x−2)f(x) dx

for all f ∈ C∞(R) compactly supported on (0,∞) and ⟨u, f⟩ = 0 for all f ∈ C∞(R)
compactly supported on (−∞, 0).

Solution 1. One thing to try on problems like this is to use integration by parts to make
the term that is bad at 0 less bad, at the cost of putting derivatives on f (which isn’t really
a cost at all when we are talking about distributions) and having boundary terms behave
poorly at 0 (but we only care about f supported away from 0, so this won’t be an issue).

In this case, this procedure works pretty efficiently, although it still took me a couple
tries to get everything working. The first thing I tried was integrating x−2 and differen-
tiating cos(x−2)f(x), which didn’t immediately work because the derivatives of cos(x−2)
created singularities at 0 as well. But doing that made me realize that x−2 cos(x−2) very
nearly has an elementary antiderivative. Since d

dx
sin(x−2) = −2x−3 cos(x−2), we will write∫∞

0
x−2 cos(x−2)f(x) dx =

∫∞
0
x−3 cos(x−2)(xf(x)) dx. Integrating by parts, this becomes

sin(x−2)f(x)
2

∣∣∣0
∞
+
∫∞
0

sin(x−2)
2

(f ′(x) + xf(x)) dx. Since sin(x−2) and x sin(x−2) are in L1
loc, the

map ⟨u, f⟩ =
∫∞
0

sin(x−2)
2

(f ′(x) + xf(x)) dx is a well-defined distribution. It certainly sends
functions supported on (−∞, 0) to 0, and undoing the integration by parts I started with,
we see that equals

∫∞
0
x−2 cos(x−2)f(x) dx when f is compactly supported on (0,∞).

Exercise 2. On R \ {0} define f(x) = |x|−7/2. Find a tempered distribution h ∈ S ′(R) so
that f = h on R \ {0}.

Solution 2. We will integrate by parts. Suppose φ ∈ S(R) and is compactly supported
away from 0. Then integrating by parts (I’ll leave it to the reader to do this carefully -
you want to break up the domain into (−∞, 0) and (0,∞), and then use the fact that φ is
supported away from 0 to ensure the boundary terms vanish)∫

|x|−7/2φ(x) dx =
2

5

∫
|x|−5/2φ′(x) dx =

4

15

∫
|x|−3/2φ′′(x) dx =

8

15

∫
|x|−1/2φ(3)(x) dx.

The final term is a well-defined tempered distribution: it is in L1((−1, 1)) and has (much
better than) polynomial growth as |x| → ∞. So we will take that to be h, and undoing the
integration by parts written out above, we see that h = f on R \ {0}, as desired.

Exercise 3.
(1) Prove or disprove: there exists a distribution u ∈ D′(R) so that its restriction to

(0,∞) is given by

⟨u, f⟩ =
∫ ∞

0

e1/x
2

f(x) dx

for all C∞ which are compactly supported in (0,∞).
1
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(2) Prove or disprove: there exists a distribution u ∈ D′(R) so that its restriction to
(0,∞) is given by

⟨u, f⟩ =
∫ ∞

0

x−2ei/x
2

f(x) dx

for all C∞ which are compactly supported in (0,∞).

Solution 3.
(1) This is false. Suppose it was true. Then there would exist some N such that

⟨u, f⟩ ≲ ||f ||CN for smooth functions f supported on [0, 1]. Let ϕ be a smooth
bump function supported on [1/4, 3/4], equal to 1 on [1/3, 2/3], and everywhere non-
negative. Define ϕε = ϕ(x/ε). Repeatedly differentiating, we see that ||ϕε||CN ≲
ε−N ||ϕ||CN , so εN⟨u, ϕε⟩ ≲ 1. Changing variables, we see that ⟨u, ϕε⟩ = ε⟨uε, ϕ⟩,
where uε = e1/(εx)

2 . It suffices then to prove that for any C > 0, there exists ε suffi-
ciently small such that ⟨uε, ϕ⟩ > Cε−(N+1). Set ε = 3

2 log(A)1/2
for A a large number.

Then for x ∈ [1/3, 2/3] e1/(εx)
2 ≥ A, so ⟨uε, ϕ⟩ ≥ 1

3
A. But for A sufficiently large,

A > C(2/3 log(A))(N+1)/2, since limA→∞
A

log(A)(N+1)/2 = ∞. Therefore, we can find an
ε > 0 such that ⟨uε, ϕ⟩ ≳ ε−(N+1), so u cannot be a distribution.

(2) Let’s write ⟨u, f⟩ = −2i
∫∞
0

−ei/x
2

2ix3 xf(x) dx. If f is compactly suported on (0,∞),
then integrating parts, we see that

⟨u, f⟩ = 2i

∫ ∞

0

ei/x
2

[xf(x)]′ dx = 2i

∫ ∞

0

xei/x
2

f ′(x) dx+ 2i

∫ ∞

0

ei/x
2

f(x) dx.

As both xei/x2
, ei/x

2 ∈ L1
loc, both are distributions, and hence so is ⟨u, f⟩.

Exercise 4.
(1) Suppose Λ is a distribution on Rn such that supp(Λ) = {0}. If f ∈ C∞

c (Rn) satisfies
f(0) = 0, does it follow that the product fΛ = 0 as a distribution?

(2) Suppose Λ is a distribution on Rn such that supp(Λ) ⊂ K, where K = {x ∈ Rn :
|x| ≤ 1}. If f ∈ C∞

c (R) vanishes on K, does it follow that fΛ = 0 as a distribution?

Solution 4.
(1) No. Consider Λ = ∂′0 and φ = xψ for some ψ ∈ Cc(R) with ψ(0) ̸= 0. Then

⟨Λ, φ⟩ = ψ(0) ̸= 0, but φ(0) = 0.
(2) It does, although the proof is somewhat painful. I’m not sure if you could take certain

steps for granted (in particular, the fact that if f vanishes to all orders on K, then
⟨Λ, f⟩ = 0, which would make things much easier). As writing things carefully in
Latex takes a long time, I will leave some details for you to sort out, but what I am
doing is modifying the of Theorem 6.25 in Rudin’s book Functional Analysis. You
can email me if you have questions.

First, let’s prove that if f vanishes on K, then fα(x) = 0 for any x ∈ K and any
multiindex α (since we are on Rn, we have to worry about derivatives in different
directions). We will induct on |α|. The base case follows from our assumption that
f vanishes on K. Now suppose that f that fα(x) = 0 for any α of order n and let β
be a multi-index of order n+1. Suppose fβ(x) = c > 0 (the c < 0 case is analogous)
for some x ∈ K. Since f is smooth, there is an open set U around x such that
fβ(y) > c/2 for y ∈ U . Then K ∩ U contains an open set W on which fβ(y) > c/2.
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Since |β| ≥ 1, there is an index i for which βi ̸= 0. Then fβ = ∂if
β′ where β′ is

the same as β except with the ith multiindex decremented by 1. By the induction
hypothesis, we know fβ′

(x) = 0 for x ∈ K and hence for x ∈ W , but we can find
y, y + εei ∈ W , in which case |f(y) − f(y + εei)| ≥ cε

2
, a contradiction. Hence, fβ

vanishes on K.
Now suppose f vanishes onK. Then, as previously noted, fα vanishes onK for any

multiindex α. Without loss of generality, we may assume f is supported on B(0, 2),
as ⟨Λ, g⟩ = 0 for any g compactly supported on Kc. By the definition of distributions,
there exists N ∈ N such that |⟨Λ, φ⟩| ≤ ||φ||N for φ supported on B(0, 2). Fix η > 0,
we will aim to prove that |⟨Λ, f⟩| ≤ η. Since f vanishes to all orders at K, we know
that for εη sufficiently small |x| < 1+ εη, |Dαf(x)| ≤ η for all |α| = N . It follows, by
the mean-value theorem, that |Dβf(x)| ≤ Cβη(|x| − 1)|α|−|β| for fixed constants Cβ.
We can find a family of bump functions ψε equal to 1 on B(0, 1 + ε) and supported
on B(0, 1+2ε) such that |Dαψε|(x) ≤ Cαε

−|α| for all multiindices α and ε > 0. Then
ψεΛ = Λ, since Λ is supported on K and ψε = 1 on an open neighborhood of K. It
follows that

⟨Λ, f⟩ = ⟨Λ, ψεf⟩ ≤ sup
|α|≤N

sup
1≤|x|≤1+2ε

|Dα(ψεf)(x)|.

By the chain rule, Dα(ψεf)(x) =
∑

β+γ=α ψ
β
ε (x)f

γ(x), so if 2ε < εη, we have

|Dα(ψεf)(x)| ≤
∑

β+γ=α

|Dβψε|(x)|Dγf |(x) ≤
∑

β+γ=α

CαCβη(|x| − 1)|α|−|γ|ε−|β|

≤ 2
∑

β+γ=α

CαCβηε
|α|−|β|−|γ|

= Cη.

All the constants denote fixed numbers (in particular, they do not depend on η), so
since η was arbitrar,y we have that ⟨Λ, f⟩ = 0, as desired.

Exercise 5. Extra 721 Problem:
For f ∈ L2(R+), define Tf(x) =

∫∞
0

f(y)
x+2y

dy. Prove that T is a bounded operator
L2(R+) → L2(R+).

Solution 5. Changing variables, we see that it suffices to prove T̃ f(x) =
∫∞
0

f(y)
x+y

dy is
bounded L2(R+) → L2(R+). Applying the principle of duality, it suffices to prove that
for any f, g ∈ L2(R+),

∫∞
0

∫∞
0

f(y)g(x)
x+y

dx dy ≤ C||f ||L2||g||L2 for a fixed constant C. Write
Ik = [2k, 2k+1] for k ∈ Z. Then we see that

∫∞
0

∫∞
0

f(y)g(x)
x+y

dx dy =
∑

k,j∈Z
∫
Ik

∫
Ij

f(y)g(x)
x+y

dx dy.

If j ≤ k for (x, y) ∈ Ik × Ij x + y ≈ 2k, so
∫
Ik

∫
Ij

f(y)g(x)
x+y

dx dy ≈ 2−k||f ||L1(Ik)||g||L1(Ij).
By Hölder’s inequality, we see that 2−k||f ||L1(Ik)||g||L1(Ij) ≤ 2−k2j/22k/2||f ||L2(Ik)||g||L2(Ij).
Therefore,

∑
k≥j

∫
Ik

∫
Ij

f(y)g(x)
x+y

dx dy ≈
∑

k≥j 2
(j−k)/2||f ||L2(Ik)||g||L2(Ij).

Using Hölder’s inequaltiy once more, we see that

∑
k≥j

2(j−k)/2||f ||L2(Ik)||g||L2(Ij) ≤

(∑
k≥j

2(j−k)||f ||2L2(Ik)

)1/2(∑
k≥j

2(j−k)||g||2L2(Ij)

)1/2

.
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Because we are summing over the range k, j ∈ Z, k ≤ j, fixing k and summing in j or fixing j

and summing k, the 2j−k always sums to 1. Therefore, we see that
(∑

k≥j 2
(j−k)||f ||2L2(Ik)

)1/2
≤

||f ||L2(R+) and
(∑

k≥j 2
(j−k)||g||2L2(Ij)

)1/2
≤ ||g||L2(R+). Therefore,∑

k≥j

2(j−k)/2||f ||L2(Ik)||g||L2(Ij) ≤ ||f ||L2(R+)||g||L2(R+).

We handle the j ≥ k sum similarly and arrive at the same conclusion, completing the
problem.

Exercise 6. Extra 721 Problem:
Let U = {x ∈ Rn : |x| < 1} be the open unit ball in Rn. Let ρ : U → R be a smooth

function such that ρ(0) = 0,∇ρ(0) ̸= 0. Let Σ = {x ∈ U | ρ(x) = 0}. For x ∈ U , let
d(x) = infy∈Σ |x− y|.

(1) For x ∈ V = {x ∈ Rn : |x| ≤ 1/2}, prove that there is a point y ∈ Σ such that
d(x) = |x− y|.

(2) For x ∈ V \ Σ and for any y ∈ Σ such that d(x) = |x − y|, prove that the vector
∇ρ(y) is a scalar multiple of x− y.

(3) Prove that there is an open set W with 0 ∈ W ⊂ V and a C∞ function φ : W → R
such that for all x ∈ W , |φ(x)| = d(x).

AN: This is a pretty old qual problem and part 2 and 3 feel more geometric (i.e. closer
to a 761 problem) than most analysis qual problems now. Both require the implicit/inverse
function theorem, but no theory beyond that.

Solution 6.
(1) Since 0 ∈ Σ, d(x) ≤ 1

2
for all x ∈ V , and if d(x) = |x|, then we can take y = 0.

Now suppose d(x) < |x|. Choose η such that 2d(x) < η < 1 and yn ∈ Σ such that
limn→∞ |x − yn| = d(x). For n sufficiently large, |x − yn| − d(x) ≤ η − 2d(x), so
|x− yn| ≤ η − d(x). It follows that for n sufficiently large, yn ∈ Bη−d(x)(x)∩Σ. This
is the intersection of a compact set and a closed set and hence is itself closed. Then
we can find a subsequence ynk

→ y ∈ Σ, and since limk→∞ |x− ynk
| = d(x), we know

|x− y| = d(x).
(2) We would like to prove that if y ∈ Σ minimizes |x−y|2, then ∇ρ(y) is a scalar multiple

of x− y. Since y is a minimizer, we know that for any smooth path ψ : (−ε, ε) → Σ
such that ψ(0) = y, d

dz
|x−ψ(z)|2|z=0 = 0. Since |x−ψ(z)|2 = x2 +ψ(z)2 − 2x ·ψ(z),

we see that ψ′(0) · (x − ψ(0)) = ψ′(0) · (x − y) = 0. We will prove that for any v
orthogonal to ∇ρ(y), we can find a smooth path ψ such that ψ′(0) = v. This would
complete the problem, since if v · (x− y) = 0 for any v orthogonal to ∇ρ(y), we must
have that x− y is colinear with ∇ρ(y).

For any curve ψ : (−ε, ε) → Σ such that ψ(0) = y, d
dz
ρ ◦ ψ = 0, since ρ ◦ ψ ≡ 0.

On the other hand, d
dz
ρ ◦ ψ(0) = ∇ρ(y) · ψ′(0), so ψ′(0) is orthogonal to ∇ρ(y). It

suffices then to find n − 1 functions ψ1, . . . , ψn(0) such that ψ′
1(0), . . . , ψ

′
n−1(0) are

linearly independent.
For this, we will use the implict function theorem. We can assume ∇ρ(y) ̸= 0,

since otherwise the x − y is certainly colinear. Without loss of generality, assume
∂

∂xn
ρ(y) ̸= 0. Denote the first n − 1 coordinates of y as y′. Then there is a ball
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U = B(y′, ε) and a smooth function g : U → R so that (z, g(z)) ∈ Σ for all z ∈ U .
Define ψi(δ) = (δei + y′, g(δei + y′)) for δ ∈ (−ε, ε). Then ψ′

i(0) =
(
ei,

∂
∂ei
g(y′)

)
.

These are necessarily linearly independent if ei ̸= ej, so as previously discussed, we
are done.

(3) Use the implicit function theorem as described in the previous problem to find
a neighborhood B(0, ε) of 0 and a smooth function g : Bn−1(0, ε) → R so that
(z, g(z)) ∈ Σ and ∇ρ(z, g(z)) ̸= 0. Now let F : Bn−1(0, ε) × R → V by F (z, α) =

(z, g(z)) + α ∇ρ(z,g(z))
|∇ρ(z,g(z))| . Using the inverse function theorem at (0, 0) (I’ll leave it to

you to check the invertibility of DF (0)), we can find a neighborhood W ⊂ B(0, ε) of
0 and a function Φ : W → Bn−1(0, ε)×R such that F ◦Φ(y) = y for all z ∈ W . Then
for x ∈ W , let φ(x) = Φn(x), where Φn denotes the n entry of Φ. Let’s prove that
|φ(x)| = d(x). For each x ∈ W , we can find y ∈ Σ such that |x− y| = d(x). By the
previous problem, it follows that there exists α such that α′∇ρ(y) = (x − y). Then
x = y + α′∇ρ(y) = α′|∇ρ(y)| ∇ρ(y)

|∇ρ(y)| . Denote α = α′|∇ρ(y)|. Since y ∈ Σ ∩ B(0, ε),
y = (z, g(z)) for some z ∈ Bn−1(0, ε). Then x = F (z, α). Then Φ(x) = (z, α), so
φ(x) = α. But d(x) = |x− y| = |α′∇ρ(y)| = |α| = |φ|(x), as desired.

Exercise 7. Extra 721 Problem:
Consider a differentiable function f : R → R.
(1) Suppose the second derivative of f exists at x0 (but not necessarily anywhere else).

Show that limh→0
f(x0+h)+f(x0−h)−2f(x0)

h2 = f ′′(x0).
(2) Suppose limh→0

f(x0+h)+f(x0−h)−2f(x0)
h2 exists. Recall that we have define f to be a

differentiable function. Is it true that the second derivative of f exists at x0?

Solution 7.
(1) We know that f ′′(x0) = limh→0

f ′(x0+h)−f ′(x0)
h

, so f ′′(x0) = limh→0
f ′(x0+h)−f ′(x0−h)

2h
.

By L’Hopital’s rule (which only requires differentiability and the numerator and de-
nominator both going to zero), we know that

lim
h→0

f(x0 + h) + f(x0 − h)− 2f(x0)

h2
= lim

h→0

f ′(x0 + h)− f ′(x0 − h)

2h

which have already seen to be equal to f ′′(x0).

(2) No, consider, for example, f(x) =

{
x2 x ≥ 0

−x2 x < 0
. This is differentiable every where

with derivative f ′(x) = 2|x|, so it is not twice differentiable at zero. On the other
hand, f(h)− f(−h)− 2f(0) = 0 for all h, since f is odd, and therefore

lim
h→0

f(x0 + h) + f(x0 − h)− 2f(x0)

h2
= 0.


