
DAY 11 PROBLEMS AND SOLUTIONS

Exercise 1. Let X = {P : R → R|P is a polynomial}. Prove that there does not exist a
norm || · || on X such that (X, || · ||) is a Banach space.

Solution 1. Suppose such a norm ||·|| exists. Let ||P ||coeff be the sup-norm of the coefficients
of P . Let Kn,m = {P ∈ X : deg(P ) ≤ n, ||P ||coeff ≤ m}. Since

⋃
n,m Kn,m = X, by the Baire

category theorem, some Kn,m must have non-empty interior. Then in particular, there exists
some open ball B(P, r) ⊂ Kn,m. This contains an element of degree ≥ n + 1 given by
Q = P + σxn+1 for σ sufficiently small. Then we can write Q = limk→∞ Pk for elements
Pk ∈ Kn,m. Write Pk =

∑n
j=0 aj,kx

j. Since each aj,k falls in a compact set, we may pass to
a subsequence so that aj,k → aj for each j. Let R(x) =

∑n
j=0 ajx

j. Then Pk → R. But
R ̸= Q, since deg(R) ≤ n and deg(Q) ≥ n+ 1, a contradiction.

Exercise 2. For f, g ∈ L2[0, 1], let ⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx and set

gn(x) =
n2/3 sin(n/x)

xn+ 1
.

Does there exists α > 0 such that
∞∑
n=1

|⟨f, gn⟩|α < ∞.

hold for every f ∈ L2? Hint: is ||gn||L2 a bounded sequence?

Solution 2. The first thing you should think to do is answer the question asked in the
hint. The answer it that ||gn||L2 is not bounded. It suffices to prove that ||gn||2L2 =∫ 1

0
n4/3| sin(n/x)|2

(nx+1)2
dx is unbounded. The n4/3 is an obvious source of growth for this inte-

gral. On the other hand, we should expect that the | sin(n/x)|2 term will contribute less as
n gets larger, essentially because the periods of sin(n/x) get narrower as n get’s larger. We
need to quantify the rate of decay to ensure that it is slower than the rate of growth, and
hence see that ||gn||2L2 is unbounded.

It suffices to prove that
∫ 1

0
| sin(n/x)|2
(nx+1)2

dx ≥ C
n

for some fixed constant C. Keeping track of
constants in this would be a big pain though, so I’ll use asymptotic notation instead. To
make the denominator go away, we will limit the domain of the integral to [0, 1/n], on when
(nx+1)2 ∈ [1, 4]. We therefore reduce our problem to proving

∫ 1/n

0
| sin(n/x)|2 dx ≳ 1

n
. Now

substitute u = n/x. Then − n
u2 du = dx, so∫ 1/n

0

| sin(n/x)|2 dx = n

∫ ∞

n2

| sin(u)|2

u2
du.
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We can bound this below by restricting the domain of integration to where sin(u) ≥ 1
2
, which

is contained in I =
⋃

k∈Z∩[n2,∞) Ik, where Ik = [kπ − π/3, kπ + π/3]. Then

n

∫ ∞

n2

| sin(u)|2

u2
du ≳ n

∑
k∈Z∩[n2,∞)

∫
Ik

1

u2
du.

On Ik, 1
u2 ≈ 1

k2
. Each Ik has constant length, so

n

∞∑
k=n2

∫
Ik

1

u2
du ≳ n

∞∑
k=n2

1

k2
.

By the integral comparison test,
∑∞

k=n2
1
k2

≈ 1
n2 , so n

∑∞
k=n2

1
k2

≈ 1
n
. Putting this all together,

we see that
∫ 1

0
| sin(n/x)|2
(nx+1)2

dx ≳ 1
n
, as desired. Hence, ||gn||2L2 is unbounded.

Now that we are done sorting out the hint, we should figure out why the author added the
hint. In other words, what is the relation between ||gn||L2 being unbounded and

∑∞
n=1 |⟨f, gn⟩|α

being infinite. It is reasonable to guess that if ||gn||L2 is not small, then
∑∞

n=1 |⟨f, gn⟩|α is not
small (that is, finite) either. Turning that into an actual proof requires a bit of functional
analysis.

First, note that if there exists α > 0 such that
∑∞

n=1 |⟨f, gn⟩|α < ∞, then by the divergence
test (who knew 221 content was important for the qual!), limn→∞ |⟨f, gn⟩|α = 0. It follows
that limn→∞ |⟨f, gn⟩| = 0 and, since f ∈ L2 in arbitrary, we see that gn converges weakly
0 in L2. But by the open mapping theorem, we know weakly convergent sequences must
be bounded in norm, and hence ||gn||L2 would be bounded, contradicting our earlier proof
otherwise. Hence,

∑∞
n=1 |⟨f, gn⟩|α = ∞ for any α > 0.

Exercise 3. Let fn be a sequence of continuous functions on I = [0, 1]. Suppose that for
every x ∈ I there exists an M(x) < ∞ so that |fn(x)| ≤ M(x) for all n ∈ N. Show then
that {fn} is uniformly bounded on some interval, that is there exists M ∈ R and an interval
(a, b) ⊂ I so that |fn(x)| ≤ M for all n ∈ N and x ∈ (a, b).

Solution 3. This is a Baire category theorem problem. I don’t have any helpful advice on
seeing that that is the right tool to use, but hopefully it will come with practice.

On to the solution. Suppose the desired conclusion does not hold, we will attempt to
prove that there is a point x where |fn(x)| is unbounded. If we want to use Baire’s theorem
to prove something exists, we should prove that it is contained in a countable intersection of
open dense sets. Let AM = {x ∈ I : |fn(x)| > M for some n}. Since each fn is continuous,
AM the union of the open sets f−1

n ((−∞,−M) ∪ (M,∞)) over n ∈ N and hence is itself
open. Moreover, each AM is dense, since we have assumed that any interval contains a point
x where |fn(x)| > M for some n. Then A :=

⋂
M∈N AM is non-empty, by Baire’s theorem.

But for any x ∈ A, for any M ∈ N, x ∈ AM , so there exists n ∈ N such that |fn(x)| ≥ M .
Then M(x) ≥ M for all M , contradicting our assumption that M(x) < ∞. Hence, the
desired conclusion must hold..

Exercise 4. Assume that X is a compact metric space and T : X → X is a continuous
map. Let M1(T ) denote the set of Borel probability measures on X such that T∗µ = µ.
Prove:

(1) M1(T ) ̸= ∅.
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(2) If M1(T ) = {µ} consists of a single measure µ, then∫
X

f dµ = lim
N→∞

1

N

N−1∑
n=0

f ◦ T n(x)

for every continuous function f : X → R and point x ∈ X.

Solution 4.

(1) For any x ∈ X, denote by δx the unit mass at x, that is, the measure satisfying∫
f(y) dδx(y) = f(x). Now fix a point x ∈ X, let mn be the Borel measure δTn(x)

for n = 0, 1, . . . , and for N = 0, 1, . . . , let µN = 1
N

∑N−1
n=0 mn. Then since each mn

is a probability measure, ||µN || = 1
N

∑N−1
n=0 ||mn|| = 1, so µN is also a probability

measure. Then by Banach-Alaoglu it has a weak-∗ convergent subsequence. Call
the limit µ. Since X is compact, 1 ∈ C0(X), so

∫
1 dµ = limk→∞

∫
1 dµNk

= 1.
We also know that µ is a positive measure, since if f ∈ C(X) is non-negative, then∫
f dµ = limk→∞

∫
f dµNk

≥ 0, so since µ is a positive measure with unit mass, it is
a probability measure. Finally, for any f ∈ C(X), we have∣∣∣∣∫ f ◦ T dµ−

∫
f dµ

∣∣∣∣ = lim
k→∞

∣∣∣∣∫ f ◦ T − f dµNk

∣∣∣∣
= lim

k→∞

1

Nk

∣∣∣∣∣
Nk−1∑
n=0

f ◦ T n+1(x)−
Nk−1∑
n=0

f ◦ T n(x)

∣∣∣∣∣
= lim

k→∞

|f(T n+1(x))− f(x)|
Nk

= 0.

Therefore T∗µ = µ, so µ ∈ M1(T ).
(2) Denote the measure constructed in the previous part is µx, where x is the point we

started at. If M1(T ) consists of a single measure µ, then µ = µx for all x ∈ X. It
therefore suffices to prove that

∫
X
f dµx = limN→∞

1
N

∑N−1
n=0 f ◦ T n(x) for all f ∈

C(X). Fix f ∈ C(X). By construction,
∫
X
f dµx = limk→∞

1
Nk

∑Nk−1
n=0 f ◦ T n(x) for

some sequence Nk → ∞. Now let’s prove that
∫
f dµ = limN→∞

1
N

∑N−1
n=0 f ◦ T n(x).

Keeping with the notation of first part, note that for any subsequence Nj → ∞,
1
Nj

∑Nj−1
n=0 f ◦ T n(x) =

∫
f dµNj

. Following the proof in part 1, we µNj
has a

subsequence µNjk
→ µ′ ∈ M1(T ), so limk→∞

1
Njk

∑Njk
−1

n=0 f ◦ T n(x) =
∫
f dµ′. But

since M1(T ) consists of a single element, µ′ = µ, so
∫
f dµ′ =

∫
f dµ. Therefore,

any subsequence of 1
N

∑N−1
n=0 f ◦ T n(x) has a subsubsequence converging to

∫
f dµ,

so limN→∞
1
N

∑N−1
n=0 f ◦ T n(x) =

∫
f dµ, as desired.

Exercise 5. Let {xn}∞n=1 be a sequence of elements in a Hilbert space H. Suppose that
xn → x ∈ H weakly in H and that ||xn|| → ||x|| as n → ∞. Show that then ||xn − x|| → 0.
Would the same be true for an arbitrary Banach space in place of H?
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Solution 5. We can write ||xn−x||2 = ⟨xn−x, xn−x⟩. Using linearity of the inner product,
we see that ⟨xn − x, xn − x⟩ = ||xn||2 + ||x||2 − 2⟨xn, x⟩. Since xn → x weakly, we know
⟨xn, x⟩ → ||x||2, so since ||xn||2 → ||x||2 as well, we have ||xn||2+ ||x||2−2⟨xn, x⟩ → 0. Hence,
||xn − x||2 → 0, so ||xn − x|| → 0 as well.

The same is not true for arbitrary Banach spaces. Denote by 1 the sequence (1, 1, 1, . . . ) ∈
ℓ∞. Define the sequence xn = 1 − en ∈ ℓ∞(N) (that is, (xn)m = 1 for m ̸= n and 0 for
m = n). Clearly, ||xn||ℓ∞ = 1 for all n. We also have that ||1 − xn||ℓ∞ = 1 for all n. We
will prove that xn converges weakly to 1. It suffices to prove that en converges weakly to 0.
Suppose otherwise. Then there exists f ∈ (ℓ∞(N))∗ such that f(en) ̸→ 0. Then for some
ε > 0, there exists a subsequence nk → ∞ such that |f(enk)| ≥ ε for all k. Define λ ∈ ℓ∞

to be f(enk) at the nkth entry for all k and 0 everywhere else. Then |λn| ≤ ||f || for all n,
so λ ∈ ℓ∞, but f(λ) =

∑∞
k=1 f(e

nk)2 ≥
∑∞

k=1 ε
2 = ∞, a contradiction. Hence, en converges

weakly to 0, completing the problem.
The second part is very tricky, I think it would quite challenging to come up with a

counterexample on the qual if you did not already know it.

Exercise 6. A Hamel basis for a vector space X is a collection H ⊂ X of vectors such
that each x ∈ X can be written uniquely as a finite linear combination of elements in H.
Prove that an infinite dimensional Banach space cannot have a countable Hamel basis. Hint:
Otherwise the Banach space would be first category in itself.

Solution 6. Suppose X has a countable Hamel basis H = x1, x2, . . . . Define En = span{x1, . . . , xn}..
Let’s prove that En is closed and nowhere dense. To see it is nowhere dense, let B(x, ε) be
an open ball in X. If B(x, ε) ⊂ En, then in particular, x ∈ E, so B(0, ε) = B(x, ε)−x ⊂ En.
But if a vector space contains an open ball at the origin, then since vector spaces are closed
under scaling, it contains any open ball centered at the origin, and hence En ⊃ X. But this
would imply X is finite dimensional, a contradiction. Therefore, we conclude that En must
be nowhere dense.

Let’s now prove that En is closed. You could probably use the fact that finite dimensional
subspaces are closed without proof, but it is not hard to prove, so I will do so. Let αm =∑n

i=1 α
m
i xi define a convergent sequence in En with limit α. Then it is a Cauchy sequence

in X, and hence a Cauchy sequence in En (where we equip En with the same norm as X).
But any finite dimensional vector space over R is complete, so αm → β ∈ En. Since limits
in X are unique, it follows that β = α ∈ En, and hence En is closed.

Now, the Baire category theorem tells us that
⋃

n∈NEn is nowhere dense, and hence⋃
n∈NEn ̸= X. Any linear combination of a finite subset xa1 , xa2 , . . . , xak ∈ H is contained

in Emax{a1,...,ak}, so the set of finite linear combinations of elements of H is a subset of E and
hence is not all of X either.

Exercise 7. Show that ℓ1(N) ⊊ (ℓ∞)∗(N). Hint : Consider the sequence of averages

ϕn(x) =
1

n

n∑
j=1

xj, x = (x1, x2, . . . ) ∈ ℓ∞(N).

Show that ϕn ∈ (ℓ∞(N))∗ and consider its weak-* limit points.
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Solution 7. Since ϕn is a linear combination of the entries of x, it is linear. To see that it
is bounded, note that for any x ∈ ℓ∞,

|ϕn(x)| ≤
1

n

n∑
j=1

|xj| ≤
1

n

n∑
j=1

||x||ℓ∞ = ||x||ℓ∞ .

By Banach-Alaoglu, it has weak-∗ limit points. Let ϕ be one of them. We now have to find
some way of proving that ϕ /∈ ℓ1(N). Suppose ϕ ∈ ℓ1(N). Let en ∈ ℓ∞(N) be 1 at the nth
entry and 0 elsewhere. Let En =

∑n
k=1 e

n. Then ϕ(En) =
∑n

k=1 ϕk (we’ve assumed that
ϕ ∈ ℓ1(N), so this makes sense). Since ϕ is the weak limit of ϕnk

, ϕ(En) = limk→∞
n
nk

= 0

for any n, so
∑n

k=1 ϕk = 0 for any n, and hence ϕn = 0 for any n, so ϕ = 0. Therefore,
ϕ(1) = 0, but since ϕn(1) = 1 for all n, this is a contradiction. Therefore, ϕ /∈ ℓ1(N), so
ℓ1(N) ⊊ (ℓ∞)∗(N), as desired.

Exercise 8. Extra 721 Problem:
(1) Construct a set E such that on any interval non-empty finite interval I, 0 < |E∩I| <

|I|.
(2) Prove or give a counterexample: there exists α ∈ (0, 1) and a measureable set E such

that α|I| < |E ∩ I| < |I| for every non-empty finite interval.

Solution 8.
(1) Enumerate a countable dense set in R (say, Q) as {qn : n ∈ N}. We will construct our

set E as follows: for each n, add [qn, qn + εn] to the set and remove [qn − εn, qn] from
the set, where εn is a sequence satisfying εn > 2

∑
k>n εk. Then for any interval I, let

I ′ be the middle third of I. Then there exists some m where εm < |I ′| and qm ∈ I ′.
Then E ∩ I includes a positive measure subset of [qm, qm+ εm], since we only remove
at most half the measure of that set in E after adding it to E, so |E ∩ I| > 0. On the
other hand, Ec ∩ I includes a positive measure subset of [qm − εm, qm], since we only
added half the measure of that set to E after removing it from E, so |E ∩ I| < |I|.

(2) No. If there was such a set, then fr(x) =
|E∩[x−r.x+r]|

2r
> α for all x, r. Then f(x) =

limr→0 fr(x) ≥ α for all x. By the Lebesgue Density theorem, it follows that f(x) = 1
almost everywhere, which implies that |E∩I| = |I| for all intervals I, a contradiction.

Exercise 9. Extra 721 Problem: Take a continuous function K : [0, 1]2 → R and suppose
g ∈ C([0, 1]). Show that there exists a unique function f ∈ C([0, 1]) such that

f(x) = g(x) +

∫ x

0

f(y)K(x, y) dy.

Solution 9. First, suppose K < 1. Define the operator T : C([0, 1]) → C([0, 1]) by
T (f)(x) = g(x) +

∫ x

0
f(y)K(x, y) dy. Then ||T (f)− T (h)||sup ≤

∫ 1

0
|f − h|(y)|K|(x, y) dy <

||f − h||sup, so T is a contraction. By the contraction mapping theorem, T has a fixed point
f0 satisfying the desired relation. Since T is a contraction, the solution must be unique.

Suppose |K| < M for some large enough M . Then

||T (f)− T (h)||C[0,(2M)−1] ≤
∫ (2M)−1

0

|f − h|(y)|K|(x, y) dy < ||f − h||C[0,(2M)−1]

Applying the Banach contraction principle from [0, (2M)−1], we find a fixed point f0 on
that interval. Now suppose we have defined f0 on some interval [0, a], so that for all x ∈
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[0, a], f0(x) = T (f0)(x). Then we can extend f to [0, a + (2M)−1] as follows. Set ga(x) =
g(x) +

∫ a

0
f0(y)K(x, y) dy and Ta : C([a, a + (2M)−1]) → C([a, a + (2M)−1]) by Ta(f)(x) =

ga(x) +
∫ a+x

a
f(y)K(x, y) dy. By the same reasoning as previously, we can find a fixed point

fa for Ta on [a, a + (2M)−1]. Moreover, fa(a) = ga(a) = g(a) +
∫ a

0
f0(y)K(a, y) dy = f0(a),

so fa does continuously extend f0, so write the combined function as just f0. Extending f0
past a does not change the behavior of T up to a, so we still have T (f0)(x) = f0(x) on [0, a],
while for x ∈ [a, a+ (2M)−1], T (f0)(x) = g(x) +

∫ a

0
f0(y)K(x, y) dy +

∫ x

a
f0(y)K(x, y) dy =

g(x) +
∫ x

0
f0(y)K(x, y) dy, as desired. After finitely many steps, we will have defined f on

the entire interval [0, 1].

Exercise 10. Extra 721 Problem: Let f be a continuous real-valued function on R satisfying
|f(x)| ≤ 1

1+x2 . Define F on R by

F (x) =
∞∑

n=−∞

f(x+ n)

(a) Prove that F is continuous and periodic with period 1.
(b) Prove that if G is continuous and periodic with period 1, then∫ 1

0

F (x)G(x) dx =

∫ ∞

−∞
f(x)G(x) dx.

Solution 10.

(a) Define FN(x) =
∑N

n=−N f(x+ n). Then for any k ∈ Z, x ∈ [k, k + 2], and N = N(k)

sufficiently large |FN(x)−F (x)| ≤
∑

|n|>N
1

(x+n)2+1
≲

∑
|n|>N

1
n2 ≲ 1

N
. It follows that

FN converges uniformly to F on [k, k+ 2]. Since each FN is continuous on [k, k+ 2],
F is as well. Moreover, |F (x)−F (x+1)| ≤ |FN(x)−F (x)|+ |FN(x+1)−FN(x)|+
|FN(x+1)−F (x+1)|. By what we’ve already shown, the first and third terms go to
0. The second term telescopes to |f(x+N+1)−f(x−N)| ≤ 1

(x+N+1)2
+ 1

(x−N)2
≲x

1
N2 .

It follows that |F (x)− F (x+ 1)| = 0. Since x was arbitrary, F is periodic.
(b) First, note that since G is continuous and periodic, F is continuous and periodic,

and f is absolutely integrable, both integrals always exist. Using the definitions in
the previous part, as well as the periodicity of G, we see that∫ N+1

−N

f(x)G(x) dx =
N∑

n=−N

∫ n+1

n

f(x)G(x) dx

=
N∑

n=−N

∫ 1

0

f(x+ n)G(x) dx

=

∫ 1

0

N∑
n=−N

f(x+ n)G(x) dx

=

∫ 1

0

FN(x)G(x) dx.
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It follows that∣∣∣∣∫ ∞

−∞
f(x)G(x) dx−

∫ 1

0

F (x)G(x) dx

∣∣∣∣
≤

∣∣∣∣∫ ∞

−∞
f(x)G(x) dx−

∫ N+1

−N

f(x)G(x) dx

∣∣∣∣+ ∣∣∣∣∫ 1

0

FN(x)G(x) dx−
∫ 1

0

F (x)G(x)

∣∣∣∣ .
The first term goes to 0 by the integrability of f(x)G(x), the second term is bounded
about by supx∈[0,1] |FN(x)− F (x)|

∫ 1

0
G(x) dx, which goes to 0 by the first part.


