DAY 10 PROBLEMS AND SOLUTIONS

Exercise 1. Suppose that E is a measurable set of real numbers with arbitrarily small
periods (that is, there exists a sequence of real numbers p; — 0 such that £ + p; = E).
Prove that either F or it’s complement has measure 0.

Solution 1. Suppose m(E*) # 0, let’s prove m(E) = 0. If m(E) > 0, then E has a Lebesgue
point z. Since m(E*) # 0, there is an interval, [a,a + 1] such that ¢ = m(E°N[a,a+1]) > 0.
Since x is a Lebesgue point of F, there exists § > 0 such that if ¢’ < §, then w >
1 —¢/2. Choose a period p; such that p; < min(d,£/12). Then we can cover [a,a + 1] with
intervals [z1 — p;, o1 + pil, [t2 — pi, 22 + 03], - -5 [Tm — Piy T + pi], Where z; = x + n;p; for
some n; € Z and [z; — p;, x; + pi] N [a,a + 1] # (. Tt follows that m > 2]13_. Since Lebesgue
measure is translation invariant,

m([x1—pi, z1+pi] N E) = m(([x—pi, 2 +pil+np:) N E) = m([z—pi, z+p]NE) > 2pi(1—¢/2).
We know 2mp;(1—¢/2) < m (U;~, [z — pi, xi + pi] N E) and U}~ [;—pi, zi+pi] \[a, a+1] con-
sists of two intervals [, a] and [a+1, 3] of length at most p;, som (U;~,[zi — pi, xi +pi] N E)—
m(E N [a,a+ 1]) < 2p;, and hence

m(EN[a,a+1]) > 2mp;(1 —¢/2) = 2p; > (1 —¢/2) — 2p; > 1 — 2¢/3.

It follows that m(E° N [a,a + 1]) < &/3, contradicting our definition m(E° N [a,a + 1]) = «.

Exercise 2. Let T C C be the unit circle. We say that G C T is a subgroup of T if 1 € G,
(1, € G implies (1¢; € G and ¢; € G implies (' € G.

(1) What are the compact subgroups of T?

(2) Give an example of an infinite subgroup G C T.

(3) Prove or give a counterexample: there are no measurable subgroups G C T with
|G| > 0.

Solution 2.
(1) We know T is a compact subgroup, as are the nth roots of unity F,, = {e2™*/" : =
0,1,...,n— 1}. We will show that these are the only compact subgroups.
First, any finite subgroup G C T must be a collection F;, for some n, because it
must have some element e?™(1/?) closest to 1. If z is not an integer, let n be the
least integer greater than x. Then 0 < 2 —1 < %, since otherwise would contradict

2min/x 2mil/x

the minimality of n, and therefore e is closer to 1 than e , a contradiction.
Therefore, x must be an integer. If z is an integer n, then G O F,,, and if there exists
some element 2™ € T\ F),, then § — k/n < 1/n for some choice of k, in which case
e2™i0=k/n) i5 closer to 1 than e2™(1/%) g contradiction. Hence, G = F,.

If GG is infinite, then since T is compact, it has a limit point £ € T, and since G is
closed, ¢ € GG. It follows that G contains a sequence of elements & converging to &,
in which case e?™¥ = % € (G is a sequence of elements converging to 1. Let’s prove

that G is dense in T. For any €*™ € T, we can find m; such that |n — m;0;| < 6.

We know that e?™™% ¢ G for all m € Z and lim, ., 6; = 0, so lim,; ... m;#; = n and
1
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hence €™ € G. But since G is closed, we have that 2™ € G, and since €>™ was
an arbitrary element of T, we have that G = T.

(2) Take G = {e*™ : q € Q}. This is a subgroup, because Q is a group and it is clearly
infinite.

(3) This is true. Let G be a subgroup of T with |G| > 0. First, let’s prove that G contains
an interval. We could do this using Young’s inequality, but I put this on the Lebesgue
differentiation theorem worksheet so I guess I will use the Lebesgue differentiation
theorem to do this. Let’s consider G as subset of [—, 7) closed under addition. Let
6 be a Lebesgue point for G, and without loss of generality, we may assume that
0 € [0,7/2] (the set of Lebesgue points of G is closed under translation by elements
of G, and the argument in part 1 tells us that G' contains elements arbitrarily close
to 0, so we can repeatedly translate ¢ by those elements until it is where we want
it, it will be convenient to do given our mapping of G' onto an interval). Then there
exists § > 0 such that ™CEO"0) 99 for all r < 4. Suppose there exists n €
[20—6/2,20+6/2]\G. For any £ € [0—0/2,0+6/2], we know one of £ and n—¢ cannot
be in G. Now &, n—¢& € [#—0,0+0], so for all n—GN[0—06/2,0+0/2] C [0—0,0+0]\G.
We know that m(GN[0—0/2,0+0/2]) > .99, so m(n—GN[0—3/2,0+5/2]) > .990,
and hence m([0 — 0,60 + ]\ G) > .999, so m([0 — 0,0 + 0] NG) < 1.014, contradicting
our assumption that m([@ — 9,0 + ] NG) > 1.985. Hence, G contains an interval. As
previously discussed, GG contains arbitrarily small translations, so we can translate
the interval in GG to cover all of T. Hence, if G has positive measure, then it cannot
be strictly contained in T, as desired.

Exercise 3. Let I = [0,1) and given N € N consider the dyadic intervals I; y = [j27, (j +
1)27N) for j € {0,1,...,2¥ —1}. For a function f € L!(I), define a sequence of function
Enf:I—Rby

Enf(z) = 2N/ f(t) dt forx € ;.
In
Show that limy ., Enf(z) = f(x) for a.e. x € I.

Solution 3. We’ll just run the usual proof of the Lebesgue differentiation theorem, with
minor modifications to fit this case. Let M f(z) = sup,¢;, , 2N fI‘N |f|(t) dt. Let’s first
, J

prove that M enjoys the weak-type bound ||M f||p1. < C||f]|z1- We need to show that if
Es ={x € R: Mf(z) > 0}, then dm(Es) < C||f]|z: for an absolute constant C' (that is,
one that does not depend on f or §). Now, for all x € Ej;, we can find an interval [;, n,
containing z such that | Lox |fl(z) dz > 27N§. This gives a cover for Es. By the Vitali
covering theorem, we can find a finite collection of disjoint sets I wn,-..,1j, N, such that

if fij is the interval of length 2iN with the same center as I; v, then U:’il jji7Ni covers By,
and hence m(Es) < 5> " 27V, Now we know

Jifi@ =" [ 1fi@) do= 326 = m(E)5

Jism;

Since f and § were arbitrary, we see that

1M fllpree < 5[ f]]Lr,

as desired.
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Now, let’s complete the proof of the exercise. Define Fs = {z € R : limsupy_, ., |Enf(z)—
f(y)| > 0}. It suffices to show that m(Es) = 0 for any 6 > 0, since then the set of points
where limy_,o, Exf(z) # f(z) has measure 0. Let g be a continuous approximation of f,
such that || f — g||z: < € for some small ¢ to be determined later. Then for any = and dyadic
interval I x containing z,

2 [ 150 - f@lde <2 [ 1 a0l de+2" [ 1) = glo)] dt +lgta) = S0

Ijn Ijn

By the bound on M f proven in the previous paragraph, sup,c;, 2N [ N |f(t)—g(t)| dt > 6/3
’ Js

on a set of measure < M. By Markov’s inequality (which says || f||z1e < ||f||zr and

follows very easily from the layer-cake formula), |g(z) — f(z)| > 0/3 on a set of measure
i 1
< M. And since g is continuous, limsupy_,., 2" [, |g(t)—g(x)| dt = 0. It follows that

limsupy_,o, |[Enf(x) — f(y)] > 0 on a set of measure < M < £=. Taking ¢ arbitrarily

small, we conclude that m(Ejs) = 0. Since 0 was arbitrary, we see that limy_,o |Enf(x) —
f(z)| = 0 almost everywhere.

Exercise 4. For z,y € R, let K(y) = 7 }(1 4+ y*)~!, and for ¢ > 0 let

niw) - [ TR ) f (e — ) dy.

o0

(1) Show that if f is continuous and compactly supported, then

lim sup [P f(z) — f(x)] = 0.

t—0t z€R

(2) Let p > 1. For f € LP(R) denote by M f the Hardy-Littlewood maximal function of
f. Show that there is a constant C' > 0 so that for all f € LP(R) the inequality

[P f ()| < CM f(x)

holds for every x € R and every ¢ > 0.
(3) If f € LY(R), prove that lim; ,o; P,f(z) = f(z) for almost every z € R.

Solution 4.

(1) Fix € > 0, let’s prove that for ¢ sufficiently large and all x € R, |P,(z) — f(z)| < e.
Since f is continuous and compactly supported, M := sup,cp |f(z)| < co and there
exists & > 0 such that if || < §, then |f(z 4+ h) — f(x)| < 5. Note that [ K(y) dy =
%n(m)—l—a so [ K(y) dy =1, and by change of variables, [~ t7'K(t7'y) dy = 1.
We also know that by dominated convergence that lim;_,q+ f‘y|2 5/t K(y) dy = 0, so

for ¢ sufficiently large, f|y|25/t K(y) dy > 55;-
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Then for any z € R,
Al=|[ R0 - fe)lay
<|[ KWl - )] )
<[ E@a-t =@l [ Kl )]

ly|>d/t

g
S/ K(y); dy+/ K(y)M dy
|y|<5/t ly|>8/t

2+§:

Since € > 0,z € R were arbitrary, lim, ,o+ sup, g | P:f(z) — f(z)| = 0.

(2) Recall that the Hardy-Littlewood maximal function is defined to be

wsto =g & [ 1o
r>0 2r

The idea here is to approximate the kernel K (y/t) from above with integrals of f over

intervals, then bound those from above with the Hardy-Littlewood maximal function.
For n € N and ¢ > 0, define I,,; = {z : K(z/t) > 27"]} and define Ip; = ). Since

K increases for negative x and decreases for positive x, I,,; are intervals, since K is

bounded above by 1, R = UneN nt, and I, is an increasing family: I; C I, C

We can compute that if y € Iy, then 1+ (y/t)? < 2", so y* < 2", and hence

ly| < t2"/2, and hence I,,; C [—t2"/2,#2"/2]. Tt follows that

o0

1 -n
D[ ey dy
n=1 n,t\In 1,t

2
i%/fﬂt\mx—y) iy
Z
>

IN

IN

t2n/2

42“/2t

oni
§4\f
V2 -1

Where the last inequality is by summing the geometric series > ﬁ We will take

IN

Mf(x)

Mf(x).

the latter constant as C, note that it does not depend on ¢ or x, so this reasoning
completes the problem.

I assume we can take the weak-L' boundedness of the Hardy-Littlewood maximal
function for granted, in which case we can conclude from the previous part that
Mf(x) = sup,oq Pi|f|(z) is weak-L' bounded as well, that is ||Mf||f1 < [|f]|z:-
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From here, we will reproduce the end of the proof of the Lebesgue differentiation
theorem.

Fix m € N and let E,, = {z € R : limsup, o+ |P:f(z) — f(z)] > 1/m}. For
v & Uper o limsupy e [Pif(2) — ()] = 0, 50 limg g P f(x) = f(z). We wil
conclude by proving that |E,,| = 0 for all m, so |U,,cy Em| = 0. Fix m € N and
e > 0, let’s prove that |FE,,| < . Since continuous, compactly supported functions
are dense in L}(R), we can find g € C.(R) such that ||g — f||z1 is a small value
to be determined later. It follows that ¢ differs from f by more than # on a
set of F of measure < 3ml|lg — f||z1. We know for all x € R, |P,f(x) — f(z)| <
|Pf(2) — Pug() + | Pog ) — 9(2)] + g(2) — F(@)]. TEx € F*, then |g(x) — f(z)] < 2o
We know by the first problem that limsup,_,,|P.g(z) — g(z)| = 0. By definition,
|P,f(x) — Pg(x)| < M(f — g)(x), so by the weak-L' bound previously discussed,
|P.f(z) — Pg(z)| < £ outside of a set G of measure < 3m||f — g[|z1. Then for

3
v ¢ FUG, limsup, .o+ |Pf(x) — f(z)] < &, s0 2 ¢ E,,. Since E¢, D (F UG,

3m?

we have that E,, C FUG, so |E,| < |F|+ |G| < m(3+ 3C)||f — g||z:. Choose
lf — gl < mGsoy, and we see that |En| < e. Since € was arbitrary, we have

|En| =0, as desired.

Exercise 5. Given a real number z, let {z} denote the fractional part of . Suppose « is
an irrational number and define 7" : [0, 1] — [0, 1] by

T(z)={z+a}.
Prove: If A C [0, 1] is measurable and T'(A) = A, then |A| € {0,1}.

Solution 5. If |A| = 0 or |A| = 1, we are done. So assume |A| = ¢ € (0,1). Then A has a
Lebesgue point for y 4, that is, a point x € (0, 1) where lim, g w = 1. Fix ry and
sufficiently small so that m([x —rg, z+ro]NA) > 2r¢e, where € is a number to be determined
later. We will use this to prove that |A| > ¢, a contradiction.

Next we will prove that T is measure preserving on all measurable sets. This is easy to
check for intervals. Since T'([0, 1]) = [0, 1] and T is a bijection, if 7" is measure preserving on
a set, it is also measure preserving on it’s complement. Finally, if T" is measure preserving on
a collection of sets, it is measure preserving on their disjoint union. It follows by the 7 — A
theorem that T is measure preserving on all measurable sets.

Since T' is injective, T(AN B) = T(A) N T(B) for any sets A, B. And T is measure
preserving, so m(T(A)) = m(A) for any set A. Then for any interval I, m(I N A) =
m(T(INA)) =m(T(I)NT(A)) = m(T(I)NA). We can iterate this to prove that m(INA) =
m(T™(I) N A). Now if I = [z — 19, x + 19| and |T™(x) — x| > 2rp, then T"([x — r¢,x + 1)) N
[z — o, x +1o] = 0, as both are intervals with length ry and center seperated by ry. Assume
we can find k = Lﬁj — 1 values 0 = ny,...,ny such that |77 (x) — T™(z)| > 2r for all
J #i. Tt follows that m(A) > Y7, m(T™(I) N A) > m2ree > 27’0(% —2)e > (1 —4rp)e.
By choosing ¢ to be very close to 1 and then ry very close to 0, we can ensure m(A) > ¢, a
contradiction.

We will conclude by proving our assumption that we can find k well-spread out points. It
suffices to prove that {T™(z) : n € N} is dense for any x. The mapping ¢ : R — T sending
x to ¥ is an open map, so the preimage of a dense set is dense, and since ¢ restricts
to a bijection on [0,1), {T"(x) : n € N} is dense in [0,1] as long as ¢q({T™(z) : n € N})
is dense in T. But ¢({z}) = ¢(z), so ¢(T™(x)) = q(z + na) = e*™=+m)  Therefore,
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q({T"(x) : n € N}) = {e¥m(@+en) .y € Z}. Since multiplication by ¢*™ is an automorphism
of T, we may assume z = 0, so we need only prove that G = {e*™" : n € Z} is dense in T.
But G is an infinite subgroup of T, so following the proof in the solution to exercise 2, we
see that it is dense.

Jacob Denson has a more direct solution to this problem in his notes.



