
DAY 10 PROBLEMS AND SOLUTIONS

Exercise 1. Suppose that E is a measurable set of real numbers with arbitrarily small
periods (that is, there exists a sequence of real numbers pi → 0 such that E + pi = E).
Prove that either E or it’s complement has measure 0.

Solution 1. Suppose m(Ec) ̸= 0, let’s prove m(E) = 0. If m(E) > 0, then E has a Lebesgue
point x. Since m(Ec) ̸= 0, there is an interval, [a, a+1] such that ε = m(Ec∩ [a, a+1]) > 0.
Since x is a Lebesgue point of E, there exists δ > 0 such that if δ′ < δ, then m([x−δ′,x+δ′]∩E)

2δ′
>

1− ε/2. Choose a period pi such that pi < min(δ, ε/12). Then we can cover [a, a + 1] with
intervals [x1 − pi, x1 + pi], [x2 − pi, x2 + pi], . . . , [xm − pi, xm + pi], where xi = x + nipi for
some ni ∈ Z and [xi − pi, xi + pi] ∩ [a, a + 1] ̸= ∅. It follows that m ≥ 1

2pi
. Since Lebesgue

measure is translation invariant,

m([x1−pi, x1+pi]∩E) = m(([x−pi, x+pi]+npi)∩E) = m([x−pi, x+pi]∩E) > 2pi(1−ε/2).

We know 2mpi(1−ε/2) < m (
⋃m

i=1[xi − pi, xi + pi] ∩ E) and
⋃m

i=1[xi−pi, xi+pi]\[a, a+1] con-
sists of two intervals [α, a] and [a+1, β] of length at most pi, so m (

⋃m
i=1[xi − pi, xi + pi] ∩ E)−

m(E ∩ [a, a+ 1]) < 2pi, and hence

m(E ∩ [a, a+ 1]) > 2mpi(1− ε/2)− 2pi > (1− ε/2)− 2pi > 1− 2ε/3.

It follows that m(Ec ∩ [a, a+ 1]) < ε/3, contradicting our definition m(Ec ∩ [a, a+ 1]) = ε.

Exercise 2. Let T ⊂ C be the unit circle. We say that G ⊂ T is a subgroup of T if 1 ∈ G,
ζ1, ζ2 ∈ G implies ζ1ζ2 ∈ G and ζ1 ∈ G implies ζ−1

1 ∈ G.
(1) What are the compact subgroups of T?
(2) Give an example of an infinite subgroup G ⊊ T.
(3) Prove or give a counterexample: there are no measurable subgroups G ⊊ T with

|G| > 0.

Solution 2.
(1) We know T is a compact subgroup, as are the nth roots of unity Fn = {e2πik/n : k =

0, 1, . . . , n− 1}. We will show that these are the only compact subgroups.
First, any finite subgroup G ⊂ T must be a collection Fn for some n, because it

must have some element e2πi(1/x) closest to 1. If x is not an integer, let n be the
least integer greater than x. Then 0 < n

x
− 1 < 1

x
, since otherwise would contradict

the minimality of n, and therefore e2πin/x is closer to 1 than e2πi1/x, a contradiction.
Therefore, x must be an integer. If x is an integer n, then G ⊃ Fn, and if there exists
some element e2πiθ ∈ T \ Fn, then θ− k/n < 1/n for some choice of k, in which case
e2πi(θ−k/n) is closer to 1 than e2πi(1/x), a contradiction. Hence, G = Fn.

If G is infinite, then since T is compact, it has a limit point ξ ∈ T, and since G is
closed, ξ ∈ G. It follows that G contains a sequence of elements ξi converging to ξ,
in which case e2πiθi = ξi

ξ
∈ G is a sequence of elements converging to 1. Let’s prove

that G is dense in T. For any e2πiη ∈ T, we can find mi such that |η −miθi| < θi.
We know that e2πimθi ∈ G for all m ∈ Z and limi→∞ θi = 0, so limi→∞miθi = η and
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hence e2πiη ∈ G. But since G is closed, we have that e2πiη ∈ G, and since e2πiη was
an arbitrary element of T, we have that G = T.

(2) Take G = {e2πiq : q ∈ Q}. This is a subgroup, because Q is a group and it is clearly
infinite.

(3) This is true. Let G be a subgroup of T with |G| > 0. First, let’s prove that G contains
an interval. We could do this using Young’s inequality, but I put this on the Lebesgue
differentiation theorem worksheet so I guess I will use the Lebesgue differentiation
theorem to do this. Let’s consider G as subset of [−π, π) closed under addition. Let
θ be a Lebesgue point for G, and without loss of generality, we may assume that
θ ∈ [0, π/2] (the set of Lebesgue points of G is closed under translation by elements
of G, and the argument in part 1 tells us that G contains elements arbitrarily close
to 0, so we can repeatedly translate θ by those elements until it is where we want
it, it will be convenient to do given our mapping of G onto an interval). Then there
exists δ > 0 such that m(G∩[θ−r,θ+r])

2r
> .99 for all r ≤ δ. Suppose there exists η ∈

[2θ−δ/2, 2θ+δ/2]\G. For any ξ ∈ [θ−δ/2, θ+δ/2], we know one of ξ and η−ξ cannot
be in G. Now ξ, η−ξ ∈ [θ−δ, θ+δ], so for all η−G∩[θ−δ/2, θ+δ/2] ⊂ [θ−δ, θ+δ]\G.
We know that m(G∩ [θ−δ/2, θ+δ/2]) > .99δ, so m(η−G∩ [θ−δ/2, θ+δ/2]) > .99δ,
and hence m([θ− δ, θ+ δ] \G) > .99δ, so m([θ− δ, θ+ δ]∩G) < 1.01δ, contradicting
our assumption that m([θ− δ, θ+ δ]∩G) > 1.98δ. Hence, G contains an interval. As
previously discussed, G contains arbitrarily small translations, so we can translate
the interval in G to cover all of T. Hence, if G has positive measure, then it cannot
be strictly contained in T, as desired.

Exercise 3. Let I = [0, 1) and given N ∈ N consider the dyadic intervals Ij,N = [j2−N , (j+
1)2−N) for j ∈ {0, 1, . . . , 2N − 1}. For a function f ∈ L1(I), define a sequence of function
ENf : I → R by

ENf(x) = 2N
∫
Ij,N

f(t) dt for x ∈ Ij,N .

Show that limN→∞ENf(x) = f(x) for a.e. x ∈ I.

Solution 3. We’ll just run the usual proof of the Lebesgue differentiation theorem, with
minor modifications to fit this case. Let Mf(x) = supx∈Ij,N 2N

∫
Ij,N

|f |(t) dt. Let’s first
prove that M enjoys the weak-type bound ||Mf ||L1,∞ ≤ C||f ||L1 . We need to show that if
Eδ = {x ∈ R : Mf(x) ≥ δ}, then δm(Eδ) ≤ C||f ||L1 for an absolute constant C (that is,
one that does not depend on f or δ). Now, for all x ∈ Eδ, we can find an interval Ijx,Nx

containing x such that
∫
Ijx,Nx

|f |(x) dx ≥ 2−Nδ. This gives a cover for Eδ. By the Vitali
covering theorem, we can find a finite collection of disjoint sets Ij1,N1 , . . . , Ijm,Nm such that
if Ĩj,N is the interval of length 5

2N
with the same center as Ij,N , then

⋃m
i=1 Ĩji,Ni

covers Eδ,
and hence m(Eδ) ≤ 5

∑m
i=1 2

−Ni . Now we know∫
I

|f |(x) dx ≥
m∑
i=1

∫
Iji,mi

|f |(x) dx ≥
m∑
i=1

2−Niδ ≥ δm(Eδ)/5.

Since f and δ were arbitrary, we see that

||Mf ||L1,∞ ≤ 5||f ||L1 ,

as desired.
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Now, let’s complete the proof of the exercise. Define Eδ = {x ∈ R : lim supN→∞ |ENf(x)−
f(y)| > δ}. It suffices to show that m(Eδ) = 0 for any δ > 0, since then the set of points
where limN→∞ENf(x) ̸= f(x) has measure 0. Let g be a continuous approximation of f ,
such that ||f − g||L1 < ε for some small ε to be determined later. Then for any x and dyadic
interval Ij,N containing x,

2N
∫
Ij,N

|f(t)− f(x)| dt ≤ 2N
∫
Ij,N

|f(t)− g(t)| dt+ 2N
∫
Ij,N

|g(t)− g(x)| dt+ |g(x)− f(x)|.

By the bound on Mf proven in the previous paragraph, supx∈Ij,N 2N
∫
Ij,N

|f(t)−g(t)| dt > δ/3

on a set of measure <
C||f−g||L1

δ
. By Markov’s inequality (which says ||f ||L1,∞ ≤ ||f ||L1 and

follows very easily from the layer-cake formula), |g(x) − f(x)| > δ/3 on a set of measure
< 3||f−g||L1

δ
. And since g is continuous, lim supN→∞ 2N

∫
Ij,N

|g(t)−g(x)| dt = 0. It follows that

lim supN→∞ |ENf(x)− f(y)| ≥ δ on a set of measure <
C||f−g||L1

δ
< Cε

δ
. Taking ε arbitrarily

small, we conclude that m(Eδ) = 0. Since δ was arbitrary, we see that limN→∞ |ENf(x) −
f(x)| = 0 almost everywhere.

Exercise 4. For x, y ∈ R, let K(y) = π−1(1 + y2)−1, and for t > 0 let

Ptf(x) =

∫ ∞

−∞
t−1K(t−1y)f(x− y) dy.

(1) Show that if f is continuous and compactly supported, then

lim
t→0+

sup
x∈R

|Ptf(x)− f(x)| = 0.

(2) Let p ≥ 1. For f ∈ Lp(R) denote by Mf the Hardy-Littlewood maximal function of
f . Show that there is a constant C > 0 so that for all f ∈ Lp(R) the inequality

|Ptf(x)| ≤ CMf(x)

holds for every x ∈ R and every t > 0.
(3) If f ∈ L1(R), prove that limt→0+ Ptf(x) = f(x) for almost every x ∈ R.

Solution 4.

(1) Fix ε > 0, let’s prove that for t sufficiently large and all x ∈ R, |Pt(x) − f(x)| < ε.
Since f is continuous and compactly supported, M := supx∈R |f(x)| < ∞ and there
exists δ > 0 such that if |h| < δ, then |f(x+ h)− f(x)| < ε

2
. Note that

∫
K(y) dy =

arctan(x)
π

+C, so
∫∞
−∞ K(y) dy = 1, and by change of variables,

∫∞
−∞ t−1K(t−1y) dy = 1.

We also know that by dominated convergence that limt→0+
∫
|y|≥δ/t

K(y) dy = 0, so
for t sufficiently large,

∫
|y|≥δ/t

K(y) dy ≥ ε
2M

.
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Then for any x ∈ R,

|Ptf(x)− f(x)| =
∣∣∣∣∫ ∞

−∞
t−1K(t−1y)[f(x− y)− f(x)] dy

∣∣∣∣
≤

∣∣∣∣∫ ∞

−∞
K(y)[f(x− ty)− f(x)] dy

∣∣∣∣
≤

∫
|y|<δ/t

K(y)|f(x− ty)− f(x)| dy +
∫
|y|≥δ/t

K(y)|f(x− ty)− f(x)| dy

≤
∫
|y|<δ/t

K(y)
ε

2
dy +

∫
|y|≥δ/t

K(y)M dy

≤ ε

2
+

ε

2
= ε

Since ε > 0, x ∈ R were arbitrary, limt→0+ supx∈R |Ptf(x)− f(x)| = 0.
(2) Recall that the Hardy-Littlewood maximal function is defined to be

Mf(x) = sup
r>0

1

2r

∫ r

−r

|f |(x− y) dy.

The idea here is to approximate the kernel K(y/t) from above with integrals of f over
intervals, then bound those from above with the Hardy-Littlewood maximal function.

For n ∈ N and t > 0, define In,t = {x : K(x/t) ≥ 2−n]} and define I0,t = ∅. Since
K increases for negative x and decreases for positive x, In,t are intervals, since K is
bounded above by 1, R =

⋃
n∈N In,t, and In is an increasing family: I1 ⊂ I2 ⊂ . . . .

We can compute that if y ∈ In,t, then 1 + (y/t)2 ≤ 2n, so y2 ≤ t22n, and hence
|y| ≤ t2n/2, and hence In,t ⊂ [−t2n/2, t2n/2]. It follows that

Ptf(x) ≤
∞∑
n=1

1

t

∫
In,t\In−1,t

21−n|f |(x− y) dy

≤
∞∑
n=1

2

2nt

∫
In,t

|f |(x− y) dy

≤
∞∑
n=1

2

2nt

∫ t2n/2

−t2n/2

|f |(x− y) dy

≤
∞∑
n=1

42n/2t

2nt
Mf(x)

≤ 4

√
2√

2− 1
Mf(x).

Where the last inequality is by summing the geometric series
∑∞

n=0
1√
2
n . We will take

the latter constant as C, note that it does not depend on t or x, so this reasoning
completes the problem.

(3) I assume we can take the weak-L1 boundedness of the Hardy-Littlewood maximal
function for granted, in which case we can conclude from the previous part that
M̃f(x) = supt>0 Pt|f |(x) is weak-L1 bounded as well, that is ||Mf ||L1,∞ ≤ ||f ||L1 .
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From here, we will reproduce the end of the proof of the Lebesgue differentiation
theorem.

Fix m ∈ N and let Em = {x ∈ R : lim supt→0+ |Ptf(x) − f(x)| ≥ 1/m}. For
x /∈

⋃
m∈N Em, lim supt→0+ |Ptf(x) − f(x)| = 0, so limt→0 Ptf(x) = f(x). We will

conclude by proving that |Em| = 0 for all m, so
∣∣⋃

m∈N Em

∣∣ = 0. Fix m ∈ N and
ε > 0, let’s prove that |Em| < ε. Since continuous, compactly supported functions
are dense in L1(R), we can find g ∈ Cc(R) such that ||g − f ||L1 is a small value
to be determined later. It follows that g differs from f by more than 1

3m
on a

set of F of measure ≤ 3m||g − f ||L1 . We know for all x ∈ R, |Ptf(x) − f(x)| ≤
|Ptf(x)−Ptg(x)|+ |Ptg(x)−g(x)|+ |g(x)−f(x)|. If x ∈ F c, then |g(x)−f(x)| < 1

3m
.

We know by the first problem that lim supt→0 |Ptg(x) − g(x)| = 0. By definition,
|Ptf(x) − Ptg(x)| ≤ M̃(f − g)(x), so by the weak-L1 bound previously discussed,
|Ptf(x) − Ptg(x)| ≤ C

3m
outside of a set G of measure ≤ 3m||f − g||L1 . Then for

x /∈ F ∪ G, lim supt→0+ |Ptf(x) − f(x)| ≤ 2
3m

, so x /∈ Em. Since Ec
m ⊃ (F ∪ G)c,

we have that Em ⊂ F ∪ G, so |Em| < |F | + |G| ≤ m(3 + 3C)||f − g||L1 . Choose
||f − g||L1 ≤ ε

m(3+3C)
, and we see that |Em| < ε. Since ε was arbitrary, we have

|Em| = 0, as desired.

Exercise 5. Given a real number x, let {x} denote the fractional part of x. Suppose α is
an irrational number and define T : [0, 1] → [0, 1] by

T (x) = {x+ α}.
Prove: If A ⊂ [0, 1] is measurable and T (A) = A, then |A| ∈ {0, 1}.

Solution 5. If |A| = 0 or |A| = 1, we are done. So assume |A| = c ∈ (0, 1). Then A has a
Lebesgue point for χA, that is, a point x ∈ (0, 1) where limr→0

m([x−r,x+r]∩A)
2r

= 1. Fix r0 and
sufficiently small so that m([x−r0, x+r0]∩A) > 2r0ε, where ε is a number to be determined
later. We will use this to prove that |A| > c, a contradiction.

Next we will prove that T is measure preserving on all measurable sets. This is easy to
check for intervals. Since T ([0, 1]) = [0, 1] and T is a bijection, if T is measure preserving on
a set, it is also measure preserving on it’s complement. Finally, if T is measure preserving on
a collection of sets, it is measure preserving on their disjoint union. It follows by the π − λ
theorem that T is measure preserving on all measurable sets.

Since T is injective, T (A ∩ B) = T (A) ∩ T (B) for any sets A,B. And T is measure
preserving, so m(T (A)) = m(A) for any set A. Then for any interval I, m(I ∩ A) =
m(T (I∩A)) = m(T (I)∩T (A)) = m(T (I)∩A). We can iterate this to prove that m(I∩A) =
m(T n(I) ∩A). Now if I = [x− r0, x+ r0] and |T n(x)− x| > 2r0, then T n([x− r0, x+ r0]) ∩
[x− r0, x+ r0] = ∅, as both are intervals with length r0 and center seperated by r0. Assume
we can find k = ⌊ 1

2r0
⌋ − 1 values 0 = n1, . . . , nk such that |T nj(x) − T ni(x)| > 2r0 for all

j ̸= i. It follows that m(A) ≥
∑m

i=1 m(T ni(I) ∩ A) ≥ m2r0ε ≥ 2r0(
1

2r0
− 2)ε ≥ (1 − 4r0)ε.

By choosing ε to be very close to 1 and then r0 very close to 0, we can ensure m(A) > c, a
contradiction.

We will conclude by proving our assumption that we can find k well-spread out points. It
suffices to prove that {T n(x) : n ∈ N} is dense for any x. The mapping q : R → T sending
x to e2πix is an open map, so the preimage of a dense set is dense, and since q restricts
to a bijection on [0, 1), {T n(x) : n ∈ N} is dense in [0, 1] as long as q({T n(x) : n ∈ N})
is dense in T. But q({x}) = q(x), so q(T n(x)) = q(x + nα) = e2πi(x+nα). Therefore,
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q({T n(x) : n ∈ N}) = {e2πi(x+αn) : n ∈ Z}. Since multiplication by e2πix is an automorphism
of T, we may assume x = 0, so we need only prove that G = {e2πiαn : n ∈ Z} is dense in T.
But G is an infinite subgroup of T, so following the proof in the solution to exercise 2, we
see that it is dense.

Jacob Denson has a more direct solution to this problem in his notes.


