
DAY 1 PROBLEMS AND SOLUTIONS

Exercise 1. For a sequence (ak) let sn =
∑n

k=1 ak and σL = 1
L

∑L
n=1 sn. We say that∑∞

k=1 ak is Cesáro summable to S if limL→∞ σL = S.

(1) Prove: sn − σn = (n−1)an+(n−2)an−1+···+a2
n

.
(2) Prove: If

∑∞
k=1 ak is Cesáro summable to S and if limk→∞ kak = 0, then

∑∞
k=1 ak

converges and
∑∞

k=1 ak = S.

Solution 1.
(1) Let’s induct on n. If n = 1, sn = σn = a1, so the desired equality holds. Now

suppose the equality holds for some n. Note that σn+1 = n
n+1

σn + 1
n+1

sn+1. Then
sn+1 − σn+1 =

n
n+1

(sn+1 − σn). Applying the inductive hypothesis,

sn+1 − σn = sn+1 − sn +
(n− 1)an + · · ·+ a2

n
=

nan+1 + (n− 1)an + · · ·+ a2
n

.

Then n
n+1

(sn+1 − σn) =
nan+1+(n−1)an+(n−2)an−1+···+a2

n+1
, as desired.

(2) We need to prove that limk→∞ sk = S, so it suffices to prove

lim
k→∞

sk − σk = lim
k→∞

(k − 1)ak + (k − 2)ak−1 + · · ·+ a2
k

= 0.

Fix ε > 0 and choose N large enough that |kak| < ε/2, and hence |(k − j)ak| < ε/2
for all k ≥ N and j < k . Then
(k − 1)ak + · · ·+ a2

k
=

(k − 1)ak + · · ·+ (N − 1)aN
k

+
(N − 2)aN−1 + · · ·+ a2

k

The first expression on the right is < ε/2. Taking k > N sufficiently large makes the
second expression < ε/2 as well, since the numerator is fixed. Then the whole sum
is < ε, so |sk − σk| < ε. Since ε was arbitrary, limk→∞ sk − σk = 0, and we are done.

Exercise 2. Let
Ω = {(x1, x2) ∈ R2 : 0 < x2 < x2

1 ≤ 1/2}.
Define f : R2 → R by

f(x) = (x2
1 + x2

2)
−b/2| log(x2

1 + x2
2)|−γ.

Determine for which values b > 0, γ ∈ R,
∫
Ω
f(x) dx is finite.

Solution 2. Let’s radially integrate. The only part of f that could cause the integral to
diverge is the singularity at 0 (depending on the sign of γ, there might be a singularity where
x2
1 + x2

2 = 1 as well, but we can never get very close to it because Ω ⊂ B3/4(0)), so we are
free to ignore parts of the domain outside of the circle of radius 1/2. We also have that both
Ω and f are symmetric about the x2-axis, so

∫
Ω
f(x) dx < ∞ if and only if

∫
Ω+ f(x) dx > 0,

where Ω+ = {(x1, x2) ∈ Ω : x1 > 0}. We have∫
Ω+

f(x) dx =

∫ 1/2

0

r−b

| log(r)|γ
M(r) dr,

1
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where M(r) denotes the Lebesgue measure of the set

A(r) := {θ ∈ [0, π/2] : (r cos(θ), r sin(θ)) ∈ Ω} = {θ ∈ [0, π/2) : r2 cos2(θ) > r sin(θ) > 0}

Let’s prove that M(r) ≈ r (a ≈ b means ca < b < Ca for positive constants c, C), justifying
replacing M(r) in our integral with r. Applying the Pythagorean identity, we see that A(r) =
[0, ξ), where u = sin(ξ) solves ru2 + u − r = 0, and hence M(r) = ξ. Using the quadratic
formula, we have sin(ξ) =

√
1+4r2−1

2r
. Since sin(ξ) ≤ ξ ≤ 2 sin(ξ) for ξ ∈ [0, π/2], we know

that M(r) ≈
√
1+4r2−1

2r
. Taylor expanding r 7→

√
1 + 4r2, we have

√
1 + 4r2 = 1+2r2+O(r4).

Since r ∈ [0, 1/2], 2r2 +O(r4) ≈ r2, and hence M(r) ≈ r2

r
= r, as desired.

Substituting this in, we see that the original integral converges if and only if∫ 1/2

0

r1−b

| log(r)|γ
dr < ∞.

For me, it is more comfortable to first substitute u = 1/r. The integral becomes
∫∞
2

ub−3

| log(u)|γ dr

and now the singularity is at ∞. Any (positive) power of u grows faster than any power of
log(u), so if b− 3 < −1, the integral converges and if b− 3 > −1, it diverges. Equivalently,
if b < 2, the integral converges and if b > 2 it diverges, no matter what γ is. On the other
hand, if b = 2, then the integral becomes

∫∞
2

1
u| log(u)|γ du. Substituting v = log(u), this

becomes
∫∞
log(2)

1
vγ

dv, which is finite if and only if γ > 1.

Exercise 3. Consider the series
∞∑
n=1

1

n
sin
(x
n

)
.

(1) Does it converge uniformly on [0, 1]?
(2) Does it converge uniformly on [0,∞)?

Solution 3.
(1) It does converge uniformly in the given range. It suffices to prove that for any ε > 0,

there exists N ∈ N such that if M ≥ N , then
∣∣∑∞

n=M
1
n
sin
(
x
n

)∣∣ ≤ ε. Note that by
the standard result that | sin(x)| ≤ |x|,∣∣∣∣∣

∞∑
n=N

1

n
sin
(x
n

)∣∣∣∣∣ ≤
∞∑

n=N

1

n

∣∣∣sin(x
n

)∣∣∣ ≤ ∞∑
n=N

x

n2
≤

∞∑
n=N

1

n2

Since
∑∞

n=1
1
n2 < ∞, we know that limN→∞

∑∞
n=N

1
n2 = 0, and hence for N suffi-

ciently large and all M ≥ N ,
∑∞

n=M
1
n2 < ε. For these values of M , it follows that∣∣∑∞

n=M
1
n
sin
(
x
n

)∣∣ ≤ ε as well, so we have uniformy convergence.
(2) Suppose the series converged uniformly on [0,∞). Then there exists N sufficiently

large so that for all M ≥ N and all x,
∣∣∑∞

n=M
1
n
sin
(
x
n

)∣∣ < 1/100. It follows that∣∣∑∞
n=N

1
n
sin
(
N
n

)∣∣ < 1/100. But N
n

∈ [0, 1] for all n ≥ N , so sin
(
N
n

)
≥ N

10n
. It

follow that
∑∞

n=N
1
n
sin
(
N
n

)
≥ N

10

∑∞
n=N

1
n2 . By the integral test,

∑∞
n=N

1
n2 ≥ 1

N
, so

N
10

∑∞
n=N

1
n2 ≥ 1

10
, contradicting our assumption that it was less than 1

100
. Hence, the

series does not converge uniformly.
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Exercise 4. Determine if
∞∑
n=1

cos(k)

k

converges.

Solution 4. I believe this can also be done by a careful application of the integral comparison
test, but I will solve it using summation by parts. We will first bound the "integral" terms,
which will come from summing cos(k). Let Ck =

∑k
j=1 cos(j) =

1
2

(∑k
j=1 e

ik +
∑k

j=1 e
−ik
)
.

By the geometric sum formula,
∣∣∣∑k

j=1 e
ik
∣∣∣ ≤ 2

|1−ei| and
∣∣∣∑k

j=1 e
−ik
∣∣∣ ≤ 2

|1−e−i| , so |Ck| =

1
2

∣∣∣∑k
j=1 e

ik +
∑k

j=1 e
−ik
∣∣∣ ≤ C for some absolute constant C. The "derivative" terms

∣∣ 1
k
− 1

k+1

∣∣ =
1

k(k+1)
≤ 1

k2
. We now see that that the product of the "integral" terms and the "derivative"

terms is bounded above by C
k2

, a summable sequence. As long as the boundary terms con-
verge (and unless the divergence test fails, one should expect the boundary terms to always
converge), we should expect summation by parts to show convergence.

To do this carefully, recall that the summation by parts formula tells us that for N ≥ M ,∣∣∣∣∣
N∑

k=M

cos(k)

k

∣∣∣∣∣ ≤ |CN |
N

+
|CM |
M

+
N−1∑
k=M

∣∣∣∣1k − 1

k + 1

∣∣∣∣ |Ck| ≤
2

M
+ C

N−1∑
k=M

1

k2
.

As each term converges to 0 in M (for the final sum, this is a consequence of the fact that∑∞
k=1

1
k2

converges), we must have that
∑N

k=1
cos(k)

k
is a Caucy sequence in N , and hence

converges as well.

Exercise 5. For a, b ≥ 0, let

F (a, b) =

∫ ∞

−∞

dx

x4 + (x− a)4 + (x− b)4
.

For what values of p ∈ (0,∞) is∫ 1

0

∫ 1

0

F (a, b)p da db < ∞?

Hint: try to prove that when a ≤ b, b−3c ≤ F (a, b) ≤ b−3C for positive constant c < C.

Solution 5. Explicitly computing F (a, b) seems rather difficult. Instead, we will attempt
to prove the approximate bound in the hint, with the assumption in the hint that a ≤ b.
When trying to bound F (a, b), we need to somehow capture both the decay of g(x) =

1
x4+(x−a)4+(x−b)4

in the denominator at for large values of x and that g(x) is bounded for
small values of x. We can approximate g(x) with one of the (x − c)−4 terms to get decay
when x is large, but we have to be careful in which one we choose to avoid issues when x is
small. Or at least, my first couple attempts went nowhere.

We have assumed that 0 ≤ a ≤ b, and without loss of generality, we may further assume
that 0 < a < b, since what is left in the final integral we want to bound is negligible. This
allows us to choose our large value approximations (x − c)−4 to avoid ever hitting a pole,
while being useful over almost the entire domain. We will choose to approximate g(x) with

1
(x−a)4

when x > a+ b or x < a− b and with 1
b4

when x ∈ (a− b, a+ b). Let h(x) the function
given by our approximation.
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To be rigorous about the approximations, it is easy to see that when x > a+ b, (x−a)4 <
x4 + (x − a)4 + (x − b)4, (x − a)4 ≥ (x − a)4 and (x − a)4 ≥ (x − b)4. We know that
x > a + b > 2a, so −a

x
≥ −1

2
, and hence (1 − a/x)4 > 1

16
. Therefore, (x − a)4 > x4

16
.

Therefore, (x− a)4 > C0(x
4 + (x− a)4 + (x− b)4) for some small enough constant C0. We

can conclude by taking the reciprocal of these inequalities that h(x) ≈ g(x) for x > a + b.
For x < a− b, we proceed similarly to see that h(x) ≈ g(x). For x ∈ (a− b, a+ b), we write
x4 + (x − a)4 + (x − b)4 = (y + a)4 + y4 + (y + a − b)4 for y = x − a ∈ (−b, b). The latter
polynomial can be expanded to a sum of D (a large absolute constant) monomials of degree
4, made up y, a, or b, and hence can be bounded above by Db4 and, as one of those terms
must necessarily be b4, it can be bounded below by b4 itself. It follows that g(x) ≈ h(x) in
that range as well, and hence that 1

C

∫∞
−∞ h(x) dx ≤

∫∞
−∞ g(x) dx ≤

∫∞
−∞ h(x) dx.

For me, validifying the approximations was the most difficult part of the problem, and
the rest was smooth sailing. We see that

∫∞
a+b

1
(x−a)4

dx+
∫ a−b

−∞
1

(x−a)4
= C1

b3
for some absolute

constant C1. We also see that
∫ a+b

a−b
1
b4

dx = 2
b3

. Then
∫∞
−∞ g(x) dx ∈ (C2b

−3, C3b
−3) for

absolute constants C2, C3. I keep saying "absolute constants" to emphasize that they do not
depend on a or b, which will be important for what happens next.

We now use this approximation in the integral we actually want to bound. Since F (a, b) =
F (b, a), we know that

∫
[0,1]2

F (a, b)p da db = 2
∫
a<b

F (a, b)p da db. By the approximation we
just proved, we see that

C2

∫
a<b

b−3p da db ≤
∫
a<b

F (a, b)p da db ≤
∫
a<b

b−3p da db.

Therefore, our desired values of p are precisely those where
∫
a<b

b−3p da db < ∞. Finally,
we write

∫
a<b

b−3p da db =
∫ 1

0
b1−3p db, and note by the p test that it converges if and only

if 1− 3p > −1, or equivalently, p < 2
3
. This is our final answer.

Exercise 6. Let
∑∞

n=1 an be a convergent series. Let bn ∈ R be an increasing sequence with
limn→∞ bn = ∞. Show that

lim
n→∞

1

bn

n∑
k=1

bkak = 0.

Solution 6. This would be much easier if
∑∞

n=1 an converged absolutely. If this was the
case, we could reach the desired conclusion easily using dominated convergence. But we do
not have absolutely convergence, so we have to workd a little harder.

The summation by parts formula tells us that
∑n

k=1 bkak = bnAn −
∑n−1

k=1(bk+1 − bk)Ak,
where Ak =

∑k
j=1 aj. Let L =

∑∞
n=1 an. Fix ε > 0 and choose N sufficiently large so

that |An − L| < ε/4 for all n ≥ N . Choose M ≥ N sufficiently large so that for m ≥ M ,
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k=1

bk+1−bk
bm

Ak

∣∣∣ < ε/4 and bN+1

bm
< ε/(4L). Then for m ≥ M∣∣∣∣∣ 1bm

(
m∑
k=1

bkak

)∣∣∣∣∣ =
∣∣∣∣∣Am −

N∑
k=1

bk+1 − bk
bm

Ak −
m∑

k=N+1

bk+1 − bk
bm

Ak

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
k=1

bk+1 − bk
bm

Ak

∣∣∣∣∣+ ε

4

∣∣∣∣∣
m∑

k=N+1

bk+1 − bk
bm

∣∣∣∣∣+
∣∣∣∣∣Am −

m∑
k=N+1

bk+1 − bk
bm

L

∣∣∣∣∣
≤ ε

4
+

ε

4

∣∣∣∣bm+1 − bN+1

bm

∣∣∣∣+ ∣∣∣∣L(1− bm − bN+1

bm

)∣∣∣∣+ |Am − L|

≤ 3ε

4
+

LbN+1

bm
≤ ε

Since ε was arbitrary, we arrive at the desired conclusion.


