COMPLEX ANALYSIS PROBLEMS

Exercise 1. Let $n \in \mathbb{N}, n \geq 3$. Compute the integral

$$\int_0^\infty \frac{dx}{1+x^n}.$$

Exercise 2. Consider

$$f(z) = \sum_{n=0}^{\infty} z^{2n}$$

which defines an analytic function inside the unit disk **D**.

- (1) Let $w \in \mathbb{C}$ be such that $w^{2^{\ell}} = 1$ for some integer ℓ . Does $\lim_{r \to 1} f(rw)$ exist?
- (2) Can f be extended analytically to some open domain $\Omega \subseteq \mathbf{D}$?

Exercise 3. Consider

$$f_n(z) = 1 + \frac{1}{z} + \frac{1}{z^2 2!} + \dots + \frac{1}{z^n n!}$$

Prove that for every $\delta > 0$, there is $n \in \mathbb{N}$ such that all zeros of $f_n(z)$ are inside $\{|z| < \delta\}$.

Exercise 4. Let f be analytic in the upper half plane and continuous on it's closure. Assume that f satisfies the estimate $|f(z)| \leq M|z|^{-r}$, $z \neq 0$ for strictly positive constants M and r. Show that if Im(z) > 0, then

$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(t)}{t-z} dt$$

Exercise 5. Recall that an entire function f is said to be of exponential type if

$$|f(z)| \le C e^{D|z}$$

for some positive constants C and D. Prove that if f is an entire function of exponential type, then so is f'.

Exercise 6. Let f_n be a sequence of analytic functions in a complex domain Ω . Suppose that all of f_n are injective in Ω and that $f_n \to f$ uniformly on compact subsets of Ω . Show that then either f is one-to-one in Ω or f is constant.

Exercise 7. Show that any two bounded analytic functions in the strip $\{|\text{Im}z| < 1/2\}$ which coincide on the set $\{1/\pi \log n : n \in \mathbb{N}\}$ must coincide on the whole strip. Can the same be said about the set $\{2/\pi \log n : n \in \mathbb{N}\}$?

Exercise 8. Suppose the functions f_1 and f_2 are analytic at each point of $\overline{\mathbf{D}}$. Prove that the function $|f_1(z)| + |f_2(z)|$, when considered on $\overline{\mathbf{D}}$, reaches its maximum on $\partial \mathbf{D}$

Exercise 9. Compute the improper integral

$$\int_{-\infty}^{\infty} \frac{e^{its^5}s^4}{1+s^{10}} \ ds$$

for every $t \in \mathbb{R}$.

Exercise 10. Suppose $f : \mathbf{D} \to \mathbb{C}$ is holomorphic. Show that there exists a sequence $z_n \in \mathbf{D}$ such that $\lim_{n\to\infty} |z_n| = 1$ and $\limsup_{n\to\infty} |f(z_n)| < \infty$.

Exercise 11. Fix 0 < r < R. Prove that there exists $\varepsilon > 0$ such that if $P : \mathbb{C} \to \mathbb{C}$ is a polynomial, then

$$\max_{r \le |z| \le R} \left| P(z) - \frac{1}{z} \right| > \varepsilon.$$

Note that ε is independent of P.

Exercise 12. Suppose $D \subset \mathbb{C}$ is a bounded domain and $f : D \to D$ is holomorphic. Prove that if $0 \in D$, f(0) = 0, and f'(0) = 1, then f(z) = z for all $z \in D$.