Math 121A: Homework 9 solutions

1. The first integral is given by
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since all terms cancel in pairs. The second integral is given by
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As expected, both integrals evaluate to zero, since they involve integrating an ana-

lytic function around a closed curve.

2. Differentiating Cauchy’s formula gives
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3. By making use of the result from the previous question, the integral can be evaluated

according to
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4. By making the substitution z = z + pe'?, the integral can be written as
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If n = 1 the integrand is 1, and thus the integral evaluates to 27ti. Otherwise the

integral is
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5. By writing y = z — 1, the Laurent series at z = 1 is given by
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While it is difficult to write down an explicit expression for terms in the Laurent
series, the first three terms are given by
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While these first three terms in the bracket appear to agree with the pattern ) ;> y"27",
this is coincidental, and later terms in the series do not follow this pattern.

6. By writing y = z — 2, the Laurent series at z = 2 is given by
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7. By making the substitution ¢ = z, the integral be rewritten as an integral around
the unit circle C,
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The integrand has simple poles at z = —5i (which is outside C) and z = —i/5 (which
is inside C). By the residue theorem, the integral can be evaluated in terms of the
residue at z = —i/5,

Res 2 z= L lim (z+1/5)
(5z+i)(z+51))" 5)  z5-i/5 (5z+1i)(z + 5i)
2
li —_—
=175 5(z + 5i)
2 1
5i(—1/5+5)  12i

Hence the integral is given by
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