
Math 121A: Homework 8 solutions

1. (a) To calculate a Green function solution, consider the case of an impulsive input,
f (x) = δ(x − x′) for −1 < x′ < 1. Then for x < x′ and x > x′ the solution has
the form

y(x) = Ax + B

for some constants A and B, which are different in the two regions. In the region
x < x′, the solution must satisfy the boundary condition y(−1) = 0, and hence

y−(x) = C(x + 1)

for some constant C. Similarly, in the region x > x′, in order to satisfy the
boundary condition y(1) = 0, the solution is

y+(x) = D(x − 1)

for some constant D. To satisfy continuity at x = x′,

C(x′ + 1) = D(x′ − 1)

and to ensure a change of derivative of 1 at x = x′,

1 = y′+(x′)− y′−(x′) = D − C.

Hence
C(x′ + 1) = (C + 1)(x′ − 1)

and thus
C =

x′ − 1
2

, D =
x′ + 1

2
.

The Green function is therefore

G(x, x′) =

{
(x+1)(x′−1)

2 for x < x′,
(x−1)(x′+1)

2 for x > x′.

(b) The functions are shown in Fig. 1. For each value of x′ the solution corresponds
the case when f (x) is given by an impulsive term, δ(x − x′). Each solution is
continuous, and the delta function term creates a shift in derivative of size 1 at
x′.
Physically, the equation that is being solved can be thought of as describing
the position of an elastic string that is held fixed at x = ±1, where forces are
applied along its length. The curves in Fig. 1 are what would be expected if a
point mass was attached to a string and it was allowed to deform.

1



−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

−1 −0.5 0 0.5 1

G
(x

,x
′ )

x

x′ = −2/3
x′ = −1/3

x′ = 0
x′ = 1/3
x′ = 2/3

Figure 1: Several solutions G(x, x′) representing solutions of the differential equation for
the case when f (x) = δ(x − x′).
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(c) The solution is given by

y(x) =
∫ 1

−1
G(x, x′) f (x′)dx′ =

∫ 1/4

−1/4
G(x, x′)dx′

and there are several cases depending on the value of x. If x < −1/4,

y(x) =
∫ 1/4

−1/4

(x + 1)(x′ − 1)
2

dx′

=
(x + 1)

2

∫ 1/4

−1/4
(x′ − 1)dx′

=
(x + 1)

2

[
x′2

2
− x′

]1/4

−1/4

= −x + 1
4

.

By symmmetry, the solution for x > 1/4 is given by

y(x) =
x − 1

4
.

If |x| ≤ 1/4, then

y(x) =
∫ x

−1/4
G(x, x′) f (x′)dx′ +

∫ 1/4

x
G(x, x′) f (x′)dx′

=
x − 1

2

∫ x

−1/4
(x′ + 1)dx′ +

x + 1
2

∫ 1/4

x
(x′ − 1)dx′

=
x − 1

2

[
x′2

2
+ x′

]x

−1/4
+

x + 1
2

[
x′2

2
− x′

]1/4

x

=
x2

2
+

7
32

.

Hence the general solution can be written as

y(x) =

{
x2

2 + 7
32 for |x| < 1/4,

|x|−1
4 for |x| ≥ 1/4.

The input function f (x) and solution y(x) are shown in Figs. 2(a) and 2(b)
respectively. It can be seen that the solution has a similar form to the solutions
shown in Fig. 1, and is a combination of the Green functions G(x, x′) for |x′| <
1/4.
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Figure 2: Solutions to the differential equation in question 1 for two different forcing
functions f (x).
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Figure 3: Convolutions of (a) f ∗ g and (b) h ∗ g considered in question 2.

(d) For f (x) = x, the solution is given by

y(x) =
∫ 1

−1
G(x, x′) f (x′)dx′

=
∫ x

−1
G(x, x′) f (x′)dx′ +

∫ 1

x
G(x, x′) f (x′)dx′

=
x − 1

2

∫ x

−1
x′(x′ + 1)dx′ +

x + 1
2

∫ 1

x
x′(x′ − 1)dx′

=
x − 1

2

[
x′3

3
+

x′2

2

]x

−1
+

x + 1
2

[
x′3

3
− x′2

2

]1

x

=
x3

6
− x

6
.

The input function and solution are plotted in Figs. 2(c) and 2(d) respectively. It
can be seen that

y′(x) =
x2

2
− 1

6
, y′′(x) = x

and thus the solution satisfies the differential equation. In addition,

y(±1) =
±1
6

− ±1
6

= 0.

and thus the boundary conditions are satisfied.
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2. The first convolution is given by

( f ∗ g)(x) =
∫ ∞

−∞
f (ξ)g(x − ξ)dξ

=
∫ ∞

−∞
(δ(ξ − 2)− δ(ξ)− δ(ξ + 2))g(x − ξ)dξ

= g(x − 2) + g(x) + g(x + 2)

and hence the convolution consists of three copies of g, so

g(x) =


1 − |x + 2| for −3 < x < −1,
1 − |x| for −1 ≤ x < 1,
1 − |x − 2| for 1 ≤ x < 3,
0 otherwise.

The function is plotted in Fig. 3(a). The second convolution is given by

(h ∗ g)(x) =
∫ ∞

−∞
f (2ξ)g(x − ξ)dξ.

Making the substitution 2ξ = y gives

(h ∗ g)(x) =
∫ ∞

−∞
f (y)g

(
x − y

2

) dy
2

=
1
2

∫ ∞

−∞
(δ(y − 2) + δ(y) + δ(y + 2))g

(
x − y

2

)
dy

=
g(x − 1) + g(x) + g(x + 1)

2
.

The solution consists of three copies of g, but now the peaks of g overlap. For the
region 0 < x < 1, note that

(h ∗ g)(x) =
g(x − 1) + g(x) + g(x + 1)

2

=
0 + 1 − |x|+ 1 − |x + 1|

2

=
1 − (−x) + 1 − (x + 1)

2

=
1
2

.

In addition, it can be seen that (h ∗ g)(−x) = (h ∗ g)(x) and hence the function is
even. An explicit form of the solution is therefore

(h ∗ g)(x) =


1/2 for |x| < 1,
1 − x/2 for 1 ≤ |x| < 2,
0 for |x| ≥ 2.

The function is plotted in Fig. 3(b).
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3. The first function is given by

f1(x) =
∫ ∞

−∞
f0(ξ) f0(x − ξ)dξ =

∫ x

x−1
f0(ξ)dξ.

Evaluating this integral can be carried out by determining the size of the non-zero
part of f0(x) in the range x − 1 < ξ < x. If 0 < x < 1 then

f1(x) =
∫ 0

x−1
0dξ +

∫ x

0
1dξ = 0 + [ξ]x0 = x

and if 1 ≤ x < 2 then

f1(x) =
∫ 1

x−1
1dξ +

∫ x

1
0dξ = [ξ]1x−1 + 0 = 2 − x.

For other values of x, the intervals x − 1 < ξ < x and 0 < ξ < 1 will not overlap and
hance f1 will be zero. Hence

f1(x) =


x if 0 < x < 1,
2 − x if 1 ≤ x < 2,
0 otherwise.

The second function is given by

f2(x) =
∫ ∞

−∞
f1(ξ) f0(x − ξ)dξ =

∫ x

x−1
f1(ξ)dξ.

For 0 < x < 1 this is

f2(x) =
∫ x

0
ξ dξ =

x2

2
.

For 1 ≤ x < 2 this is

f2(x) =
∫ 1

x−1
ξ dξ +

∫ x

1
(2 − ξ)dξ

=

[
ξ2

2

]1

x−1
+

[
2ξ − ξ2

2

]x

1

=
1 − (x − 1)2 + 4x − x2 − 4 + 1

2

=
−2x2 + 6x − 3

2
.

For 2 ≤ x < 3 this is

f2(x) =
∫ 2

x−1
(2 − ξ)dξ =

(3 − x)2

2
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and hence the general solution is

2 f2(x) =


x2 for 0 < x < 1,
−2x2 + 6x − 3 for 1 ≤ x < 2,
(3 − x)2 for 2 ≤ x < 3,
0 otherwise.

It can be verified that f2 is symmetric about x = 3/2, and thus f2(3 − x) = f2(x). The
third function is given by

f3(x) =
∫ ∞

−∞
f1(ξ) f0(x − ξ)dξ =

∫ x

x−1
f1(ξ)dξ.

For 0 < x < 1 this is

f3(x) =
∫ x

0

ξ2

2
dξ =

x3

6
.

For 1 ≤ x < 2 this is

f3(x) =
∫ 1

x−1

ξ2

2
dξ +

∫ x

1

−2ξ2 + 6ξ − 3
2

dξ

=

[
ξ3

6

]1

x−1
+

[
−2ξ3 + 9ξ2 − 9ξ

6

]x

1

=
1 − (x − 1)3

6
+

−2x3 + 9x2 − 9x + 2 + 9 − 9
6

=
1 − x3 + 3x2 − 3x + 1 − 2x3 + 9x2 − 9x + 2

6

=
−3x3 + 12x2 − 12x + 4

6
.

Now consider the case for x ≥ 2: rather than integrating directly, the symmetry of
f2 can be exploited. Starting from the definition

f3(x) =
∫ x

x−1
f2(ξ)dξ

and making use of the substitution ξ = 3 − γ gives

f3(x) = −
∫ 3−x

4−x
f2(3 − γ)dγ =

∫ 4−x

(4−x)−1
f2(γ)dγ = f3(4 − x).

Hence for 2 ≤ x < 3 the solution is given by

f3(x) = f3(4 − x)

=
−3(4 − x)3 + 12(4 − x)2 − 12(4 − x) + 4

6

=
−192 + 144x − 36x2 + 3x3 + 192 − 96x + 12x2 − 48 + 12x + 4

6

=
3x3 − 24x2 + 60x − 44

6
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Figure 4: A sequence of convolutions considered in question 3.

and for 3 ≤ x < 4 the solution is given by

f3(x) = f3(4 − x) =
(4 − x)3

6
.

Hence a complete solution is

6 f3(x) =


x3 for 0 ≤ x < 1,
−3x3 + 12x2 − 12x + 4 for 1 ≤ x < 2,
3x3 − 24x2 + 60x − 44 for 2 ≤ x < 3,
(4 − x)3 for 3 ≤ x < 4,
0 otherwise.

The functions are plotted in Fig. 4, it can be seen that as each successive convolution
is applied, the functions are smoothed out and moved to the right. The functions
begin to look like Gaussians. The area under each curve is equal to one.

4. The functions are shown in Fig. 5 for the cases of a = 1 and a = 2. It can be seen that
they are odd, and hence it is immediately known that that the cosine terms in the
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Fourier series are zero. The sine terms are given by

bn =
1
π

∫ π

−π
f (x) sin nx dx

=
2
π

∫ π

0
f (x) sin nx dx

=
2
π

∫ a

0
(a − x) sin nx dx

=
2
π

∫ a

0

− cos nx
n

dx +
2
π

[
−(a − x) cos nx

n

]a

0

= − 2
π

[
sin nx

n2

]a

0
+

2a
nπ

=
2(na − sin na)

n2π
.

Hence

f (x) =
∞

∑
n=1

2(na − sin na) sin nx
n2π

.

Comparisons to the exact forms are shown in Fig. 5 for the cases a = 1 and a = 2.

5. For 14.2.22, u = y and v = x. Since

∂u
∂x

= 0,
∂v
∂y

= 0

it can be seen that the first Cauchy–Riemann equation is satisfied. However

∂u
∂y

= 1, −∂v
∂x

= −1.

and thus the second Cauchy–Riemann equation is not satisfied. This should be
expected, since if z = x + iy the function can be written as iz̄ and thus it is not
analytic.

For 14.2.23, the real and imaginary components are given by

u =
x

x2 + y2 , v =
−y

x2 + y2 .

The two sides of the first Cauchy–Riemann equation are

∂u
∂x

=
1

x2 + y2 − 2x2

x2 + y2 =
y2 − x2

x2 + y2 ,
∂v
∂y

= − 1
x2 + y2 +

2y2

x2 + y2 =
y2 − x2

x2 + y2

and thus it is satisfied. The two sides of the second equation are

∂u
∂y

= − 2xy
x2 + y2 , −∂v

∂x
= − 2xy

x2 + y2
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Figure 5: The function considered in question 4 and the first ten terms of its Fourier series,
for the cases of (a) a = 1 and (b) a = 2.
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and they are both equal. This should be expected since the function can be written
as 1/z, and is therefore analytic.

For 14.2.24, the real and imaginary components are given by

u =
y

x2 + y2 , v = − x
x2 + y2

The two sides of the first Cauchy–Riemann equation are

∂u
∂x

= − 2xy
x2 + y2 ,

∂v
∂y

=
2xy

x2 + y2

and thus it is not satisfied, due to a sign difference. For the second equation

∂u
∂y

=
1

x2 + y2 − 2y2

x2 + y2 =
x2 − y2

x2 + y2 , −∂v
∂x

=
1

x2 + y2 − 2x2

x2 + y2 =
y2 − x2

x2 + y2

and thus the equation is satisfied. Since the function can be written as −i/z̄ it is not
analytic, so it should be expected that at least one of the Cauchy–Riemann equations
does not hold.

6. Polar coordinates (r, θ) can be linked to cartesian coordinates according to x =
r cos θ, y = r sin θ. Hence, by using the chain rule,

∂u
∂r

=
∂x
∂r

∂u
∂x

+
∂y
∂r

∂u
∂y

= cos θ
∂u
∂x

+ sin θ
∂u
∂y

(1)

and
∂u
∂θ

=
∂x
∂θ

∂u
∂x

+
∂y
∂θ

∂u
∂y

= −r sin θ
∂u
∂x

+ r cos θ
∂u
∂y

(2)

Equations 1 and 2 can be viewed as simultaneous equations for ∂u/∂x and ∂v/∂y.
By using standard methods of solution, it can be seen that

∂u
∂x

= cos θ
∂u
∂r

− sin θ

r
∂u
∂θ

(3)

and
∂u
∂y

= sin θ
∂u
∂r

+
cos θ

r
∂u
∂θ

(4)

Since the above derivation will apply for an arbitrary function, Eqs. 3 and 4 will also
hold if u is replaced by v. Hence the first Cauchy–Riemann equation can be written
as

cos θ
∂u
∂r

− sin θ

r
∂u
∂θ

= sin θ
∂v
∂r

+
cos θ

r
∂v
∂θ

(5)

and the second Cauchy–Riemann equation can be written as

sin θ
∂u
∂r

+
cos θ

r
∂u
∂θ

= − cos θ
∂v
∂r

+
sin θ

r
∂v
∂θ

. (6)

12



These equations can be expressed in a simpler form. Taking cos θ times Eq. 5 plus
sin θ times Eq. 6 gives

∂u
∂r

=
1
r

∂v
∂θ

.

Taking − sin θ times Eq. 5 plus cos θ times Eq. 6 gives

1
r

∂u
∂θ

= −∂v
∂r

.

7. By making use of the expression for the Laplacian in polar coordinates it can be seen
that

∇2u =
1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2

=
1
r

∂

∂r

(
∂v
∂θ

)
+

1
r2

∂

∂θ

(
r

∂u
∂r

)
=

1
r

∂

∂r

(
∂v
∂θ

)
− 1

r
∂

∂θ

(
∂u
∂r

)
= 0

where the final line has been obtained by assuming that the second-order partial
derivatives commute. Similarly

∇2v =
1
r

∂

∂r

(
r

∂v
∂r

)
+

1
r2

∂2v
∂θ2

= −1
r

∂

∂r

(
∂u
∂θ

)
+

1
r2

∂

∂θ

(
r

∂v
∂r

)
= −1

r
∂

∂r

(
∂v
∂θ

)
+

1
r

∂

∂θ

(
∂v
∂r

)
= 0

and thus both components satisfy the Laplace equation in polar coordinates.
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