Math 121A: Homework 7 solutions

1. (a) Since g(x) is even, the terms b, in the Fourier series are zero. The nth cosine
term is
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and the zeroth cosine term is
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(b) If f(x,t) = X(x)T(t) then
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for some constant C. Solutions for X that will satisfy the boundary conditions
will have C < 0. First consider the case when C = 0. This gives X" = 0 and
hence X(x) = ax + B; in order to satisfy the boundary conditions, it must be
that X(x) = B. The corresponding time dependent problem is " = 0 and
hence T(t) = yt + 1.



The case of C < 0 can be considered by defining C = —A2 for A > 0. It can be

seen that
X"+ A2X =0

and hence
X(x) = D cos Ax + Esin Ax.

The derivative is
X'(x) = —DAsin Ax + EA cos Ax.

The boundary conditions imply that
0= X'(7r) = —DAsin Amt + EAcos AT,

0= X'(—mn) = —DAsin A7t + EAcos ATt

There are two families of solutions. If E = 0 and D # 0 then the boundary

conditions will be satisfied if A = n where 7 is a positive integer. Thus X(x) =
2 .

cos(nx), and the corresponding time-dependent problem, given by C = —n*, is
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Therefore T(t) = Acosnct 4+ Bsinnct. If D = 0 and E # 0 then the boundary
conditions will be satisfied if A = (n +1/2). The corresponding time dependent
solution will be T(t) = A cos(n + 1/2)ct + Bsin(n + 1/2)ct.

(c) In part (a), the initial condition was written as a sum of terms of the form
cos(nx), plus a constant term—these are the spatial parts of separable solutions.
Since f; is initially zero, it follows that the solution for all times is a sum of
separable solutions,
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(d) The energy of the system can be written as
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The derivative of this expression is
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and hence the total energy is constant.

(e) Since f; is initially zero, it follows that K(0) = 0. For x > 0,
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(f) The time derivative of the series solution is
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and hence the kinetic energy is
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By orthogonality relations, all integrals involving cos(nx) cos(mx) for m # n
will vanish and hence

K(t) = 8c/ Zcos nx?;mz(nct)dx
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The spatial derivative of the series solution is

fo(x,t) = — i 4sin(nx) cos(nct)
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and hence the potential energy is
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Hence, using the relation Y00 ; n=2 = 712/6,

E(t) = K(t)+P(t)
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which is constant in time, and matches the calcaultion in part (e).

(g) Plots of f(x,t) are shown over the range from t = 0 to t = 71/c in Fig. 1. After
t = 1t/c, the waves reverse, and follow the same sequence of curves back to the
initial condition, at time t = 27t /c.
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Figure 1: Time evolution of the function f(x, f) considered in question 1.

2. (a) The Fourier transform is given by
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(b) The Fourier transform is
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(c) & can be alternatively written as
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This should be expected. Since cos x = sin(x + 77/2), it can be seen that f(x) =
¢(x + 7/2) and by basic properties of Fourier transforms, f(«) = ¢*™/2¢(a).

(d) To calculate the Fourier transform of 4, first note that

The Fourier transform of —g(—x) is —¢(—«), and hence
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(e) The function g, (x) can be written as
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gu(x) = (=1)"" k;) h(x — (2k = (n = 1))7)
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Figure 2: Fourier transforms of several of the truncated sine functions g,(x) that are
considered in question 2.



and hence
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Plots of g, («) for n = 10,20, 30 are shown in Fig. 2. It can be seen that there are
two sharp peaks in §,(a) at « = +1, which grow in size as n increases. This
should be expected, since in the limit as # tends to infinity, g, (x) becomes equal
to sin(nx) = 5 (e — e~*). Since the Fourier transform of ¢/** can be thought
of as 6(a« — k), it should be expected that the limit of 7, («) is

1 .
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which matches the peaks seen in the graph.

3. If the rate of change of the temperature of the tea is given by A multiplied by the
difference between the tea’s temperature and T;, then the temperature T(t) will
follow the differential equation
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To solve this equation, it can be separated according to

AT, — T).

ar

Fog = A

and hence
log(T—T,) = —At+C

for some constant C. Therefore if T(0) = Ty the temperature evolves according to

T(t) = T, + (To — T,)e M.



Now consider the first scenario where the milk is added initially. The initial tem-

perature will be given by the weighted average of the temperatures of the tea and

milk,

7o TVit TV _ (95 °C)200 + (5 °C)50
T Vit Ve 250

The temperature then evolves according to

=77 °C.

T(t) = (204 57¢ ) °C
and thus after twenty minutes it will be
T(20 min) = (20 + 57¢~41°8(2)) °C = 23.56 °C.
In the second scenario, the initial temperature is 95 °C and it evolves according to
T(t) = (20 + 75¢ ) °C
so after twenty minutes it will be
T(20 min) = (20 + 75¢~41°8(2)) °C = 24.69 °C.
After the milk is added, the temperature is then

(24.69 °C)200 + (5 °C)50
250

Hence the tea is hotter under the first scenario.

=20.75°C

. Consider a function y(x). If y> = r> — x2, then yy’ = r#' — x. Multiplying the given

differential by y gives
212

Yy +2xyy' —y* =0
and substituting the expressions for r gives
(rr' —x)2 +2x(rr' —x) — (r* —x*) = 0.
Expanding terms gives

r?r’? = 2xrr’ 4+ x% 4+ 2xrr’ = 2% — 1 + x> =0

and hence
22 — 12 = 0.

Assuming that r > 0 gives
¥ = 41, r(x) =xx+C

and hence

y(x) = \/(ix + C)%2 — x%2 =+/C? £ 2xC.
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5. For the system considered,

_y _dy
tan(20) = o tanf = I
and by using the trigonometric identity
2tan®
tan(20) = —————
an(29) 1 —tan?6
it follows that
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(1-y%)y =2y'x
and hence

y?y+2xy —y =0

This is the equation that was considered in the previous question, and hence

y(x) = VC? £ 2xC,

which is a parabola.
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