
Math 121A: Homework 7 solutions

1. (a) Since g(x) is even, the terms bn in the Fourier series are zero. The nth cosine
term is

an =
1
π

∫ π

−π
(|x| − π)2 cos(nx)dx

=
2
π

∫ π

0
(x − π)2 cos(nx)dx

= − 2
π

∫ π

0
2(x − π)

sin(nx)
n

dx +

[
2
π
(x − π)2 sin(nx)

n

]π

0

= − 2
π

∫ π

0
4

cos(nx)
n2 dx −

[
2
π

2(x − π)
cos(nx)

n2

]π

0

= − 4
π
[sin(nx)]π0 +

4π

πn2

=
4
n2

and the zeroth cosine term is

a0 =
1
π

∫ π

−π
(|x| − π)2dx

=
2
π

∫ π

0
(x − π)2dx

=
2
π

[
(x − π)3

3

]π

0

=
2
π

π3

3
=

2π2

3
.

and hence

g(x) =
π2

3
+

∞

∑
n=1

4 cos(nx)
n2 .

(b) If f (x, t) = X(x)T(t) then
T′′X = c2X′′T

and hence
T′′

c2T
=

X′′

X
= C

for some constant C. Solutions for X that will satisfy the boundary conditions
will have C ≤ 0. First consider the case when C = 0. This gives X′′ = 0 and
hence X(x) = αx + β; in order to satisfy the boundary conditions, it must be
that X(x) = β. The corresponding time dependent problem is T′′ = 0 and
hence T(t) = γt + η.
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The case of C < 0 can be considered by defining C = −λ2 for λ > 0. It can be
seen that

X′′ + λ2X = 0

and hence
X(x) = D cos λx + E sin λx.

The derivative is
X′(x) = −Dλ sin λx + Eλ cos λx.

The boundary conditions imply that

0 = X′(π) = −Dλ sin λπ + Eλ cos λπ,

0 = X′(−π) = −Dλ sin λπ + Eλ cos λπ.

There are two families of solutions. If E = 0 and D ̸= 0 then the boundary
conditions will be satisfied if λ = n where n is a positive integer. Thus X(x) =
cos(nx), and the corresponding time-dependent problem, given by C = −n2, is

T′′

c2T
= −n2.

Therefore T(t) = A cos nct + B sin nct. If D = 0 and E ̸= 0 then the boundary
conditions will be satisfied if λ = (n + 1/2). The corresponding time dependent
solution will be T(t) = A cos(n + 1/2)ct + B sin(n + 1/2)ct.

(c) In part (a), the initial condition was written as a sum of terms of the form
cos(nx), plus a constant term—these are the spatial parts of separable solutions.
Since ft is initially zero, it follows that the solution for all times is a sum of
separable solutions,

f (x, t) =
π2

3
+

∞

∑
n=1

4 cos(nx) cos(nct)
n2 .

(d) The energy of the system can be written as

E(t) =
1
2

∫ π

−π
( f 2

t + c2 f 2
x )dx.
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The derivative of this expression is

E′(t) =
1
2

d
dt

(∫ π

−π
( f 2

t + c2 f 2
x )dx

)
=

1
2

∫ π

−π

∂

∂t
( f 2

t + c2 f 2
x )dx

=
1
2

∫ π

−π
(2 ft ftt + 2c2 fxt fx)dx

=
∫ π

−π
ft fttdx + c2

∫ π

−π
fxt fxdx

=
∫ π

−π
ft fttdx − c2

∫ π

−π
ft fxxdx + [ ft fx]

π
−π

=
∫ π

−π
ft( ftt − c2 fxx)dx

=
∫ π

−π
0 dx

= 0

and hence the total energy is constant.

(e) Since ft is initially zero, it follows that K(0) = 0. For x > 0,

∂ f
∂x

∣∣∣∣
t=0

= 2(x − π)

and hence

P(0) =
1
2

∫ π

−π
c2 f 2

x dx

= c2
∫ π

0
4(x − π)2dx

=
4c2π3

3
.

(f) The time derivative of the series solution is

ft(x, t) = −
∞

∑
n=1

4c cos(nx) sin(nct)
n

and hence the kinetic energy is

K(t) =
1
2

∫ π

−π
f 2
t dx

=
1
2

∫ π

−π

(
∞

∑
n=1

4c cos(nx) sin(nct)
n

)2

dx.
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By orthogonality relations, all integrals involving cos(nx) cos(mx) for m ̸= n
will vanish and hence

K(t) = 8c2
∫ π

−π

∞

∑
n=1

cos2(nx) sin2(nct)
n2 dx

= 8c2π
∞

∑
n=1

sin2(nct)
n2 .

The spatial derivative of the series solution is

fx(x, t) = −
∞

∑
n=1

4 sin(nx) cos(nct)
n

and hence the potential energy is

P(t) =
1
2

∫ π

−π
c2 f 2

x dx

=
c2

2

∫ π

−π

(
∞

∑
n=1

4 sin(nx) cos(nct)
n

)2

dx

= 8c2
∫ π

−π

∞

∑
n=1

sin2(nx) cos2(nct)
n2

= 8c2π
∞

∑
n=1

cos2(nct)
n2 .

Hence, using the relation ∑∞
n=1 n−2 = π2/6,

E(t) = K(t) + P(t)

= 8c2π
∞

∑
n=1

cos2(nct) + sin2(nct)
n2

= 8c2π
∞

∑
n=1

1
n2

= 8c2π

(
π2

6

)
=

4c2π3

3
,

which is constant in time, and matches the calcaultion in part (e).

(g) Plots of f (x, t) are shown over the range from t = 0 to t = π/c in Fig. 1. After
t = π/c, the waves reverse, and follow the same sequence of curves back to the
initial condition, at time t = 2π/c.
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Figure 1: Time evolution of the function f (x, t) considered in question 1.

2. (a) The Fourier transform is given by

f̃ (α) =
1

2π

∫ ∞

−∞
f (x)e−ixαdx

=
1

2π

∫ π/2

−π/2
(cos x)e−ixαdx

=
1

4π

∫ π/2

−π/2
(eix + e−ix)e−ixαdx

=
1

4π

∫ π/2

−π/2
(eix(1−α) + e−ix(1+α))dx

=
1

4π

[
eix(1−α)

i(1 − α)
− e−ix(1+α)

i(1 + α)

]π/2

−π/2

=
1

4π

[
ie−iπα/2

i(1 − α)
+

ie−iπα/2

i(1 + α)
+

ieiπα/2

i(1 − α)
+

ie−iπα/2

i(1 + α)

]

=
1

2π

[
cos

(
πα
2

)
1 − α

+
cos

(
πα
2

)
1 + α

]

=
cos

(
πα
2

)
π(1 − α2)

.
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(b) The Fourier transform is

g̃(α) =
1

2π

∫ π

0
(sin x)e−ixαdx

=
1

4πi

∫ π

0
(eix(1−α) − e−ix(1+α))dx

=
1

4πi

[
eix(1−α)

i(1 − α)
+

e−ix(1+α)

i(1 + α)

]π

0

=
1

4πi

[
−1 − eiαπ

i(1 − α)
+

−1 − eiαπ

i(1 − α)

]
=

1 + e−iπα

2π(1 − α2)
.

(c) g̃ can be alternatively written as

g̃(α) =
e−iπα/2(eiπα/2 + e−iπα/2)

2π(1 − α2)
=

e−iπα/2 cos
(

πα
2

)
π(1 − α2)

and hence
f̃ (α)
g̃(α)

= eiπα/2.

This should be expected. Since cos x = sin(x + π/2), it can be seen that f (x) =
g(x + π/2) and by basic properties of Fourier transforms, f̃ (α) = eiαπ/2 g̃(α).

(d) To calculate the Fourier transform of h, first note that

h(x) = g(x)− g(−x).

The Fourier transform of −g(−x) is −g̃(−α), and hence

h̃(α) = g̃(α)− g̃(−α)

=
1 + e−iπα

2(1 − α2)
− 1 + eiπα

2(1 − (−α)2)

=
e−iπα − e−iπα

2(1 − α2)

=
i sin(πα)

π(α2 − 1)
.

(e) The function qn(x) can be written as

qn(x) = (−1)n−1
n−1

∑
k=0

h(x − (2k − (n − 1))π)
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Figure 2: Fourier transforms of several of the truncated sine functions qn(x) that are
considered in question 2.
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and hence

q̃n(α) = (−1)n−1
n−1

∑
k=0

e−i(2k−(n−1))παh̃(α)

= (−1)n−1h̃(α)e−iπ(n−1)α
n−1

∑
k=0

e2kiπα

= (−1)n−1
(

i sin(πα)

π(α2 − 1)

)
e−iπ(n−1)α 1 − e2niπα

1 − e2iπα

= (−1)n
(

i sin(πα)

π(1 − α2)

)
e−niπα − eniπα

e−iπα − eiπα

= (−1)n
(

i sin(πα)

π(1 − α2)

)
sin(nπα)

sin(πα)

=
i(−1)n sin(nπα)

π(1 − α2)
.

Plots of q̃n(α) for n = 10, 20, 30 are shown in Fig. 2. It can be seen that there are
two sharp peaks in q̃n(α) at α = ±1, which grow in size as n increases. This
should be expected, since in the limit as n tends to infinity, qn(x) becomes equal
to sin(nx) = 1

2i (e
ix − e−ix). Since the Fourier transform of eikx can be thought

of as δ(α − k), it should be expected that the limit of q̃n(α) is

1
2i
(δ(α − 1)− δ(α + 1)) =

i
2
(δ(α + 1)− δ(α − 1))

which matches the peaks seen in the graph.

3. If the rate of change of the temperature of the tea is given by λ multiplied by the
difference between the tea’s temperature and Tr, then the temperature T(t) will
follow the differential equation

dT
dt

= λ(Tr − T).

To solve this equation, it can be separated according to

dT
T − Tr

= −λdt

and hence
log(T − Tr) = −λt + C

for some constant C. Therefore if T(0) = T0 the temperature evolves according to

T(t) = Tr + (T0 − Tr)e−λt.
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Now consider the first scenario where the milk is added initially. The initial tem-
perature will be given by the weighted average of the temperatures of the tea and
milk,

T0 =
TtVt + TmVm

Vt + Vm
=

(95 ◦C)200 + (5 ◦C)50
250

= 77 ◦C.

The temperature then evolves according to

T(t) = (20 + 57e−λt)
◦C

and thus after twenty minutes it will be

T(20 min) = (20 + 57e−4 log(2))
◦C = 23.56 ◦C.

In the second scenario, the initial temperature is 95 ◦C and it evolves according to

T(t) = (20 + 75e−λt)
◦C

so after twenty minutes it will be

T(20 min) = (20 + 75e−4 log(2))
◦C = 24.69 ◦C.

After the milk is added, the temperature is then

(24.69 ◦C)200 + (5 ◦C)50
250

= 20.75 ◦C

Hence the tea is hotter under the first scenario.

4. Consider a function y(x). If y2 = r2 − x2, then yy′ = rr′ − x. Multiplying the given
differential by y gives

y2y′2 + 2xyy′ − y2 = 0

and substituting the expressions for r gives

(rr′ − x)2 + 2x(rr′ − x)− (r2 − x2) = 0.

Expanding terms gives

r2r′2 − 2xrr′ + x2 + 2xrr′ − 2x2 − r2 + x2 = 0

and hence
r2r′2 − r2 = 0.

Assuming that r > 0 gives

r′ = ±1, r(x) = ±x + C

and hence
y(x) =

√
(±x + C)2 − x2 =

√
C2 ± 2xC.
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5. For the system considered,

tan(2θ) =
y
x

, tan θ =
dy
dx

and by using the trigonometric identity

tan(2θ) =
2 tan θ

1 − tan2 θ

it follows that
y
x
=

2y′

1 − y′2
.

Thus
(1 − y′2)y = 2y′x

and hence
y′2y + 2xy′ − y = 0

This is the equation that was considered in the previous question, and hence

y(x) =
√

C2 ± 2xC,

which is a parabola.
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