
Math 121A: Homework 6 solutions

1. (a) The coefficients of the Fourier sine series are given by

bn =
2
π

∫ π

0
f (x) sin nx dx

=
2
π

∫ π

0
x(π − x) sin nx dx

=
2

nπ

∫ π

0
(π − 2x) cos nx dx − 2

nπ
[x(π − x) cos nx]π0

= − 2
n2π

∫ π

0
(−2)(sin nx) dx +

2
n2π

[(π − 2x) sin nx]π0

= − 4
n3π

[cos nx]π0 + 0

=
4(1 − (−1)n)

n3π
,

which can be written as

bn =

{ 8
πn3 for n odd,
0 for n even.

Hence

fs(x) =
∞

∑
k=0

8 sin[(2k + 1)x]
π(2k + 1)3 .

For the Fourier cosine series, the zeroth term is

a0 =
2
π

∫ π

0
x(π − x)dx =

2
π

[
x2π

2
− x3

3

]π

0
=

π2

3
.

The remaining terms in the Fourier cosine series are

an =
2
π

∫ π

0
x(π − x) cos nx dx

= − 2
nπ

∫ π

0
(π − 2x) sin nx dx +

2
nπ

[x(π − x) sin nx]π0

= − 2
n2π

∫ π

0
(−2) cos nx dx +

2
n2π

[(π − 2x) cos nx]π0

= 0 +
2

n2π
[−π(−1)n − π]

= −2(1 + (−1)n)

n2 ,

which can be written as

an =

{
0 for n odd,
− 4

n2 for n even.
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Hence

fc(x) =
π2

6
−

∞

∑
k=1

4 cos 2kx
(2k)2 .

(b) Plots of the first four terms of the Fourier sine and cosine series are shown in
Fig. 1, and are compared with the exact form. For the sine series, the exact form
can be written on −π < x < π as x(π − |x|), whereas for the cosine series, the
exact form can be written as |x|(π − |x|).
From the graphs, it is clear that the sine series converges more rapidly to the
exact form. This should be expected, since the terms in the sine series decay
like n−3, while the terms in the cosine series decay more slowly at a rate of
n−2. The difference in decay rates is due to the fact the sine series extension is
differentiable, whereas the cosine series extension is not.

(c) First note that

f
(π

2

)
=

π

2

(
π − π

2

)
=

π2

4
.

Hence
π2

4
= fs(π/2) =

∞

∑
k=0

8 sin[(k + 1/2)π]

π(2k + 1)3 =
∞

∑
k=0

8(−1)k+1

π(2k + 1)3 .

and therefore

π3

32
=

∞

∑
k=0

(−1)k+1

(2k + 1)3 =
1
13 − 1

33 +
1
53 − 1

73 + . . . .

π2

4
= fc(π/2) =

π2

6
−

∞

∑
k=1

4 cos kπ

(2k)2 =
π2

6
−

∞

∑
k=1

(−1)k

k2 .

Hence
π2

12
=

1
12 − 1

22 +
1
32 − 1

42 + . . . .

(d) The average value of ( f (x))2 over the interval −π ≤ x < π is

1
π

∫ π

0
f (x)2dx =

1
π

∫ π

0
x2(π − x)2dx

=
1
π

[
x3π2

3
− 2x4π

4
+

x5

5

]π

0

=
1
π

[
π5

30

]
=

π4

30
.
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Figure 1: Plots of the first four terms of (a) the Fourier sine series and (b) the Fourier cosine
series, compared to the exact forms.
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By applying Parseval’s theoreom to the Fourier sine series, this is equal to

π4

30
=

1
2

∞

∑
n=1

b2
n =

1
2

∞

∑
k=1

64
π2(2k + 1)6

and hence
π6

960
=

1
16 +

1
36 +

1
56 +

1
76 + . . . .

Similarly, applying Parseval’s theorem to the Fourier cosine series gives

π4

30
=

a2

4
+

1
2

∞

∑
n=1

a2
n =

π4

36
+

1
2

∞

∑
k=1

16
(2k)4

and therefore
π4

90
=

1
14 +

1
24 +

1
34 +

1
44 + . . . .

2. Suppose that f (x) is a real function with complex Fourier series

f (x) =
∞

∑
n=−∞

cneinx.

If f is real, then f (x) = f̄ (x), and hence

f (x) = f̄ (x) =
∞

∑
n=−∞

c̄ne−inx =
∞

∑
k=−∞

c̄−keikx

where the final equality is obtained by reordering the sum according to k = −n.
Since the functions e−inx form an orthogonal basis, it follows that c−n = c̄n.

3. Suppose that the function f has normal and complex Fourier series expansions

f (x) =
a0

2
+

∞

∑
n=1

an cos nx +
∞

∑
n=1

bn sin nx =
∞

∑
−∞

cneinx.

Using the identity eix = cos x + i sin x, the complex Fourier series can be expanded
as

f (x) = c0 +
∞

∑
n=1

cneinx +
∞

∑
n=1

c−ne−inx

= c0 +
∞

∑
n=1

cn(cos nx + i sin nx) +
∞

∑
n=1

c−n(cos nx − i sin nx)

= c0 +
∞

∑
n=1

(cn + c−n) cos nx +
∞

∑
n=1

(cn − c−n)i sin nx
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and since the cosines and sines form an orthogonal basis, it follows that

a0 = 2c0, an = cn + c−n, bn = i(cn − c−n)

where n is any positive integer. Rearrangement gives

c0 =
a0

2
, cn =

an − ibn

2
, c−n =

an + ibn

2
.

Note that if the function f (x) is real, then by making use of the identities of the
previous section,

an = cn + c̄n = 2 Re(cn), bn = i(cn − c̄n) = −2 Im(cn).

4. If f (x) = ∑∞
−∞ cneinx then

f ′(x) =
∞

∑
−∞

incneinx

and thus the complex Fourier series coefficients of f ′ are dn = incn. Similarly

f (x − l) =
∞

∑
−∞

cnein(x−l) =
∞

∑
−∞

cne−inleinx

and thus the complex Fourier series coefficients of f (x − l) are qn = cne−inl.

5. Suppose that f and g are periodic functions on the interval −π ≤ x < π, with
complex Fourier series

f (x) =
∞

∑
n=−∞

cneinx, g(x) =
∞

∑
n=−∞

dneinx.

If f ∗ g is the convolution of f and g, defined as

( f ∗ g)(x) =
∫ π

−π
f (y)g(x − y)dy

then the complex Fourier series coefficients of f ∗ g can be written as

en =
1

2π

∫ π

−π
( f ∗ g)(x)e−inxdx

=
1

2π

∫ π

−π

[∫ π

−π
f (y)g(x − y)dy

]
e−inxdx

=
1

2π

∫ π

−π

∫ π

−π
dx dy f (y)g(x − y)e−inx

=
1

2π

∫ π

−π

∫ π

−π
dx dy f (y)g(x − y)e−in((x−y)+y).
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To make progress at this point, the substitution z = x − y can be used. This changes
the limits of one of the integrals to −π − y < z < π + y. However, since the
functions being integrated are 2π-periodic, this integration interval is equivalent to
−π < z < π, and hence

en =
1

2π

∫ π

−π

∫ π

−π
dy dz f (y)g(z)e−in(z+y)

=
1

2π

[∫ π

−π
f (y)e−inydy

] [∫ π

−π
g(z)e−inzdz

]
= 2πcndn.

Thus the coefficients of the Fourier series of the convolution are the products of the
terms in the Fourier series of f and g.

6. (a) Since f (x) is an even function it can be expressed as a cosine series. The zeroth
term is

a0 =
2
π

∫ π

0
f (x)dx =

∫
2π

π

2
= 1

and the higher terms are

an =
2
π

∫ π

0
f (x) cos nx dx

=
2
π

∫ π/2

0
cos nx dx

=
2
π

[
sin nx

n

]π/2

0

=
2 sin nπ

2
nπ

.

Hence

an =

{
2(−1)(n−1)/2

nπ for n odd,
0 for n even.

and thus

f (x) =
1
2
− 2

π

∞

∑
k=0

(−1)k cos[(2k + 1)x]
2k + 1

.

(b) The filtered function has Fourier series

fλ(x) =
1
2
− 2

π

∞

∑
k=0

(−1)kλ2k+1 cos[(2k + 1)x]
2k + 1

.

Plots of fλ for the cases of λ = 0.7, 0.8, 0.9 are shown in Fig. 2(a). As λ decreases
and the filtering becomes stronger, the discontinuity in f at ±π/2 becomes in-
creasingly smoothed out over a larger range.
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Figure 2: (a) Plots of a square wave f compared to several filtered versions fλ. (b) Plots of
the corresponding filtering kernel Kλ.
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(c) Suppose that f (x) has a complex Fourier series

f (x) =
∞

∑
n=−∞

cneinx

Then filtered function will have complex Fourier coefficients λ|n|cn. By making
use of the result from question 5, it follows that if fλ = Kλ ∗ f , then Kλ has
complex Fourier coefficients λ|n|/(2π). Hence the function can be computed
according to

2πKλ(x) =
∞

∑
n=−∞

λ|n|einx

= 1 +
∞

∑
n=1

λneinx +
∞

∑
n=1

λne−inx

= −1 +
∞

∑
n=0

λneinx +
∞

∑
n=0

λne−inx

=
1

1 − λeix +
1

1 − λe−ix − 1

=
1 − λe−ix + 1 − λeix

(1 − λeix)(1 − λe−ix)
− 1

=
2 − 2λ cos x

(1 + λ2)− 2λ cos x
− 1

=
2 − 2λ cos x − 1 − λ2 + 2λ cos x

(1 + λ2)− 2λ cos x

=
1 − λ2

(1 + λ2)− 2λ cos x
.

The functions Kλ are plotted in Fig. 2(b). The width of the functions roughly cor-
respond to the widths of the jumps at ±π/2 in the filtered functions in Fig. 2(a),
as would be expected from the definition of the convolution.
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