Math 121A: Homework 5 solutions

1. (a) The volume of the pyramid is
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(b) To calculate the z coordinate of the centr01d, the same calculation as above can
be employed but with an addition factor of z. Hence
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and therefore Z = 1/4. To find the other coordinates of the centroid, note that
the pyramid is identical if any pair of coordinate axes are switched, and hence
itmustbethatx =7 =2 =1/4.

(c) If the density of the object is z, then its mass is
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which is exactly the same integral as in part (b), and hence evaluates to 1/24.
The z coordinate of the center of mass is given by
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Hence
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. By using the spherical coordinate system (r, 6, 4)), the volume is given by
Vo= / dr/ a0 [ dpr?sing
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The moment in the z direction is given by
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and hence
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. For the parabolic cylinder coordinate system where x = (1> — v?)/2 and y = uv, the
Jacobian is

a(x,y)_a—ia—’zj_u—v_z 2
a(u,v)_‘g_z 5% v ou =u-+ 0.

(@) The object is plotted in Fig. 1(a). To evaluate its volume, note that the cross
section of the object through a plane of constant x is a square, given by

ly| < V1—x2, 1z| < V1—x2
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Figure 1: Objects considered in question 4. In (a) the volume formed by the intersection
between x? + > < 1 (shown in blue) and x? + z? < 1 (shown in green) is plotted. In (b)
the additional constraint of y? + z2 < 1 (shown in red) is considered. (Images made with
POV-Ray (www.povray.org).)

The volume can therefore be integrated as
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(b) The object is plotted in Fig. 1(b). There are many ways to evaluate its volume,
although one way is to note that it can be broken down into a cube |x| < 1/ V2,
ly| < 1/v/2, |z| < 1/+/2, and six identical volume patches, attached to each
face of the cube. Each patch has a volume that can be evaluated using a similar
integral to part (a):
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Hence the volume of the object is
V =2v2+6V, =16 — 8v2 = 4.686.

5. The equation can be expanded as
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which can be simplified to

dy dy
W_ a+(1+/\)—0.

Searching for solutions of the form e?! gives
pP—2p+1+1=0, (p—1)%*=-A.

If A < 0, so that it can be written as A = —u? for > 0, then p = 1 + . This can be
written as
y(x) — Ae(1+y)x + Be(l_y)x

for some constants A and B. This an equivalently be parameterized by
y(x) =e*(Ccoshy + Dsinhp)

for some constants C and D. Since y(0) = 0, it follows that C = 0. Hence if
y(x) = De* sinh y then
y'(x) = De*(sinh px + p cosh px)
and hence
y' () —y(mt) = Ducoshur

which will never be zero unless D = 0. Hence there are no eigenfunctions for A < 0.
Similar considerations can rule out the case when A = 0. If A > 0, so that A = ¢? for
g > 0, then

y(x) = e*(Asingx + B cos gx)

The condition y(0) = 0 implies B = 0, and hence y(x) = Ae* singx, so
y'(0) = Ae*(singx + g cosgx).
The other boundary condition gives
y' () —y(m) = Agqcosqr.

This will be zero for g = (n —1/2) where n = 1,2,3,.... Thus the eigenvalues are
An = (n —1/2)? with corresponding eigenfunctions

Yn(x) = e*sin(n — 1/2)x



To verify orthogonality, consider two eigenfunctions y,, and vy, where m # n. The
innner product is
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since sin k7t = 0 for any integer k.

6. (a) Substituting f(x,t) = X(x)T(t) into the equation gives

XT =bX"T
which can be rearranged to give
TI X/I
T X

Since the LHS is a function of t only, and the RHS is a function of x only, it
follows that both sides are equal to some constant C. The function X therefore
satisties

X" =CX
with the conditions X(0) = 0 and X’(a) = 0, making it a Sturm-Liouville
problem. If C > 0 then the solutions can be written as

X(x) = Acoshgx + Bsinhgx

for ¢ = +/C, where A and B are arbitrary constants. Since X(0) = 0 implies
A =0, and X'(a) = 0 implies B = 0, it follows that there are no non-zero
solutions of this form that satisfy the boundary conditions. Similarly, if C =
0 then X(x) = Ax + B, and there are no non-zero solutions that satisfy the
boundary conditions. If C < 0, then

X(x) = Acosgx + Bsingx

for ¢ = v/ —C, where A and B are arbitrary constants. The condition X(0) = 0
gives A = 0, and the condition X’(a) = 0 implies

1
0 = —cosqa
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Figure 2: Plots of the concentration f(x,t) of gas in a channel following the diffusion
equation, for several different time points.

for non-zero solutions, and hence g = m(n —1/2)/a forn = 1,2,3,.... The
equation for the time dependence is then

2
T' = —bg’T = —b (M) T.

and hence

b(n— 1/2)271215)

T(t) = Dexp (— o

for some constant D. Hence separable solutions have the form

sin (M) exp <_b(n - 1/2)27t2t) |
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(b) Since the initial condition comprises of a linear combination of the separable so-
lutions found in part (a), the solution will be given by those separable solutions,
and hence

f(x,t) = sin ¥ ex _bsz n 1sin 177tx ox _ 289b* %t
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If a = m and b = 1 this simplifies to

i e—289t/4 ) 177tx

f(x,t) =e sin 5 + ——sin ——.

Figure 2 shows plots of f(x,t) for the values of ¢ of 0,0.2, 0.5, 1.0, 2.0, and 5.0. It

can be seen that the high frequency oscillations are damped much more rapidly

and are barely visible at t = 0.2. This should be expected, since the expontential

for this term has a significantly faster rate of decay. For later times, the low

frequency component of the gas distribution begins to decay also, as the gas is
removed at x = 0.




