
Math 121A: Homework 5 solutions

1. (a) The volume of the pyramid is

V =
∫ 1

0
dz

∫ 1−z

0
dy

∫ 1−y−z

0
dx

=
∫ 1

0
dz

∫ 1−z

0
(1 − y − z)dy

=
∫ 1

0
dz

[
(1 − z)y − y2

]1

0
− z

=
∫ 1

0

(1 − z)2

2
dz

=
∫ 1

0

w2

2
dw =

1
6

.

(b) To calculate the z coordinate of the centroid, the same calculation as above can
be employed but with an addition factor of z. Hence

Vz̄ =
∫ 1

0
z
(1 − z)2

2
dz

=
1
2

∫ 1

0
(z − 2z2 + z3)dz

=
1
2

(
1
2
− 2

3
+

1
4

)
=

1
24

and therefore z̄ = 1/4. To find the other coordinates of the centroid, note that
the pyramid is identical if any pair of coordinate axes are switched, and hence
it must be that x̄ = ȳ = z̄ = 1/4.

(c) If the density of the object is z, then its mass is

M =
∫ 1

0
z
(1 − z)2

2
dz,

which is exactly the same integral as in part (b), and hence evaluates to 1/24.
The z coordinate of the center of mass is given by

Mz̄ =
∫ 1

0
z2 (1 − z)2

2
dz

=
1
2

∫ 1

0
(z2 − 2z3 + z4)dz

=
1
2

(
1
3
− 2

4
+

1
5

)
=

1
60

.
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Hence
z̄ =

Mz̄
M

=
24
60

=
2
5

.

2. By using the spherical coordinate system (r, θ, ϕ), the volume is given by

V =
∫ a

0
dr

∫ α

0
dθ

∫ 2π

0
dϕ r2 sin θ

=

(∫ a

0
r2 dr

)(∫ α

0
sin θ dθ

)
2π

=
2πa3

3
[− cos θ]α0

=
2πa3(1 − cos α)

3
.

The moment in the z direction is given by

Vz̄ =
∫ a

0
dr

∫ α

0
dθ

∫ 2π

0
dϕ (r cos θ)r2 sin θ

=

(∫ a

0
r3 dr

)(∫ α

0

sin 2θ

2
dθ

)
2π

=
πa4

8
[− cos 2θ]α0

=
πa4

8
(1 − cos 2α)

=
πa4

8
(2 − 2 cos2 α)

=
πa4

4
(1 − cos α)(1 + cos α)

and hence

z̄ =
πa4(1 − cos α)(1 + cos α)3

4(2πa3(1 − cos α))
=

3a(1 + cos α)

8
.

3. For the parabolic cylinder coordinate system where x = (u2 − v2)/2 and y = uv, the
Jacobian is

∂(x, y)
∂(u, v)

=

∣∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ u −v

v u

∣∣∣∣ = u2 + v2.

4. (a) The object is plotted in Fig. 1(a). To evaluate its volume, note that the cross
section of the object through a plane of constant x is a square, given by

|y| ≤
√

1 − x2, |z| ≤
√

1 − x2.
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(a) (b)

Figure 1: Objects considered in question 4. In (a) the volume formed by the intersection
between x2 + y2 ≤ 1 (shown in blue) and x2 + z2 ≤ 1 (shown in green) is plotted. In (b)
the additional constraint of y2 + z2 ≤ 1 (shown in red) is considered. (Images made with
POV-Ray (www.povray.org).)

The volume can therefore be integrated as

V =
∫ 1

−1
4(1 − x2)dx = 4

[
x − x3

3

]1

−1
= 8

(
1 − 1

3

)
=

16
3

= 5.333.

(b) The object is plotted in Fig. 1(b). There are many ways to evaluate its volume,
although one way is to note that it can be broken down into a cube |x| ≤ 1/

√
2,

|y| ≤ 1/
√

2, |z| ≤ 1/
√

2, and six identical volume patches, attached to each
face of the cube. Each patch has a volume that can be evaluated using a similar
integral to part (a):

Vs =
∫ 1

1/
√

2
4(1 − x2)dx = 4

[
x − x3

3

]1

1/
√

2

= 4
[

2
3
− 1√

2
− 1

6
√

2

]
=

8
3
− 5

√
2

3
.

Hence the volume of the object is

V = 2
√

2 + 6Vs = 16 − 8
√

2 = 4.686.

5. The equation can be expanded as

−e−2x d2y
dx2 + 2xe−2x dy

dx
− e−2xy = λe−2xy,
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which can be simplified to

d2y
dx2 − 2

dy
dx

+ (1 + λ) = 0.

Searching for solutions of the form ept gives

p2 − 2p + 1 + λ = 0, (p − 1)2 = −λ.

If λ < 0, so that it can be written as λ = −µ2 for µ > 0, then p = 1 ± µ. This can be
written as

y(x) = Ae(1+µ)x + Be(1−µ)x

for some constants A and B. This an equivalently be parameterized by

y(x) = ex(C cosh µ + D sinh µ)

for some constants C and D. Since y(0) = 0, it follows that C = 0. Hence if
y(x) = Dex sinh µ then

y′(x) = Dex(sinh µx + µ cosh µx)

and hence
y′(π)− y(π) = Dµ cosh µπ

which will never be zero unless D = 0. Hence there are no eigenfunctions for λ < 0.
Similar considerations can rule out the case when λ = 0. If λ > 0, so that λ = q2 for
q > 0, then

y(x) = ex(A sin qx + B cos qx)

The condition y(0) = 0 implies B = 0, and hence y(x) = Aex sin qx, so

y′(0) = Aex(sin qx + q cos qx).

The other boundary condition gives

y′(π)− y(π) = Aq cos qπ.

This will be zero for q = (n − 1/2) where n = 1, 2, 3, . . .. Thus the eigenvalues are
λn = (n − 1/2)2 with corresponding eigenfunctions

yn(x) = ex sin(n − 1/2)x
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To verify orthogonality, consider two eigenfunctions ym and yn where m ̸= n. The
innner product is

⟨ym, yn⟩ =
∫ π

0
w(x)ym(x)yn(x)dx

=
∫ π

0
e−2x(ex sin[(m − 1/2)x])(ex sin[(n − 1/2)x])dx

=
∫ π

0
sin[(m − 1/2)]x sin[(n − 1/2])xdx

=
∫ π

0

cos[(m − n)x]− cos[(m + n + 1)x]
2

dx

=
1
2

[
sin[(m − n)x]

m − n
− sin[(m + n + 1)x]

m + n + 1

]π

0
= 0

since sin kπ = 0 for any integer k.

6. (a) Substituting f (x, t) = X(x)T(t) into the equation gives

XT′ = bX′′T

which can be rearranged to give

T′

bT
=

X′′

X
.

Since the LHS is a function of t only, and the RHS is a function of x only, it
follows that both sides are equal to some constant C. The function X therefore
satisfies

X′′ = CX

with the conditions X(0) = 0 and X′(a) = 0, making it a Sturm–Liouville
problem. If C > 0 then the solutions can be written as

X(x) = A cosh qx + B sinh qx

for q =
√

C, where A and B are arbitrary constants. Since X(0) = 0 implies
A = 0, and X′(a) = 0 implies B = 0, it follows that there are no non-zero
solutions of this form that satisfy the boundary conditions. Similarly, if C =
0 then X(x) = Ax + B, and there are no non-zero solutions that satisfy the
boundary conditions. If C < 0, then

X(x) = A cos qx + B sin qx

for q =
√
−C, where A and B are arbitrary constants. The condition X(0) = 0

gives A = 0, and the condition X′(a) = 0 implies

0 =
1
q

cos qa
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Figure 2: Plots of the concentration f (x, t) of gas in a channel following the diffusion
equation, for several different time points.

for non-zero solutions, and hence q = π(n − 1/2)/a for n = 1, 2, 3, . . .. The
equation for the time dependence is then

T′ = −bq2T = −b
(

π(n − 1/2)

a

)2

T.

and hence

T(t) = D exp
(
−b(n − 1/2)2π2t

a2

)
for some constant D. Hence separable solutions have the form

sin
(

π(n − 1/2)t
a

)
exp

(
−b(n − 1/2)2π2t

a2

)
.

(b) Since the initial condition comprises of a linear combination of the separable so-
lutions found in part (a), the solution will be given by those separable solutions,
and hence

f (x, t) = sin
πx
2a

exp
(
−bπ2t

4a2

)
+

1
5

sin
17πx

2a
exp

(
−289b2π2t

4a2

)
.
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If a = π and b = 1 this simplifies to

f (x, t) = e−t/4 sin
x
2
+

e−289t/4

5
sin

17πx
2

.

Figure 2 shows plots of f (x, t) for the values of t of 0, 0.2, 0.5, 1.0, 2.0, and 5.0. It
can be seen that the high frequency oscillations are damped much more rapidly
and are barely visible at t = 0.2. This should be expected, since the expontential
for this term has a significantly faster rate of decay. For later times, the low
frequency component of the gas distribution begins to decay also, as the gas is
removed at x = 0.
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