
Math 121A: Homework 4 solutions

1. The plane can be written as r · n = 10 where n = (2, 6,−3). The length of n is

|n| =
√

22 + 62 + 32 =
√

49 = 7.

Hence a unit normal can be written as n̂ = n/7 and thus the plane can be written as
r · n̂ = 10/7. In this form, the quantity r · n̂ represents the distance of r in the direction
of n̂.

For the position x = (−2, 4, 5), its distance from the plane is therefore

10
7

− x · n̂ =
10 − ((−2)× 2 + 4 × 6 + 5 × (−3))

7

=
5
7

.

2. If λ is an eigenvalue of an orthogonal matrix A with eigenvector v, then

Av = λv.

Taking the transpose of both sides gives

vT AT = λvT.

Applying this to the original equation gives

vT AT Av = λ2vTv

and since AT A = I it follows that

|v|2 = λ2|v2|.

Since |v| > 0, it follows that λ = ±1.

3. The squares of the matrices are

A2 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
B2 =

(
0 −i
i 0

)(
0 −i
i 0

)
=

(
(−i)i 0

0 i(−i)

)
=

(
1 0
0 1

)
C2 =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
12 0
0 (−1)2

)
=

(
1 0
0 1

)
and the products are

AB =

(
i 0
0 −i

)
, BC =

(
0 i
i 0

)
, CA =

(
0 1
−1 0

)
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BA =

(
−i 0
0 i

)
, CB =

(
0 −i
−i 0

)
, AC =

(
0 −1
1 0

)
.

It can be seen that AB = −BA, BC = −CB, and CA = −AC. In addition

AB − BA =

(
2i 0
0 −2i

)
= 2iC

BC − CB =

(
0 2i
2i 0

)
= 2iA

CA − AC =

(
0 2
−2 0

)
= 2iB.

4. Since A2 = I, it follows that A2n = I and A2n+1 = A for any integer n. Hence, by
using the Taylor series expansions for sine and cosine,

sin kA =
∞

∑
n=0

(−1)n+1A2n+1k2n+1

(2n + 1)!

=
∞

∑
n=0

(−1)n+1Ak2n+1

(2n + 1)!

= A
∞

∑
n=0

(−1)n+1k2n+1

(2n + 1)!

= A sin k

and

cos kA =
∞

∑
n=0

(−1)n A2nk2n

(2n)!

=
∞

∑
n=0

(−1)nk2n

(2n)!

= I
∞

∑
n=0

(−1)nk2n

(2n)!
= I cos k.

Since eikA = cos kA + i sin kA it follows that

eikA =

(
cos k i sin k
i sin k cos k

)
.
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The exponential is given by

ekA =
∞

∑
n=0

kn An

n!

=
∞

∑
n=0

k2n A2n

(2n)!
+

∞

∑
n=0

k2n+1A2n+1

(2n + 1)!

= I
∞

∑
n=0

k2n

(2n)!
+ A

∞

∑
n=0

k2n+1

(2n + 1)!

= I cosh k + A sinh k

=

(
cosh k sinh k
sinh k cosh k

)
5. The eigenvalues of M are given by

0 = |A − λI| =

∣∣∣∣∣∣
−λ 0 1
1 λ 0
0 1 −λ

∣∣∣∣∣∣ = 1 − λ3

and hence λ = 1, α, α2 where α = e2πi/3. To find the eigenvector v = (u, v, w)
corresponding to 1, consider −1 0 1

1 −1 0
0 1 −1

 u
v
w


Row reduction of the matrix gives −1 0 1

1 −1 0
0 1 −1

 →

 1 0 −1
0 −1 1
0 1 −1

 →

 1 0 −1
0 1 −1
0 0 0


and thus if w = 1, then u = 1 and v = 1 so v = (1, 1, 1) is an eigenvector. For the
eigenvalue α, the corresponding matrix can be row reduced as −α 0 1

1 −α 0
0 1 −α

 →

 1 0 −α2

1 −α 0
0 1 −α

 →

 1 0 −α2

0 −α −α2

0 0 0

 →

 1 0 −α2

0 −α −α2

0 0 0


and thus v = (1, α2, α) is an eigenvector, by making use of the fact that α3 = 1.
Similar considerations show that (1, α, α2) is an eigenvector for α2.

6. (a) The positions of the masses obey the equations

mẍ = −k1x + k2(y − x)
mÿ = −k2(y − x)− k3y,
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which can be written in matrix form as

m
(

ẍ
ÿ

)
=

(
−(k1 + k2) k2

k2 −(k2 + k3)

)(
x
y

)
.

(b) For m = 1, the eigenvalues satisfy

0 = det(A − λI) =

∣∣∣∣ −(k1 + k2 + λ) k2
k2 −(k2 + k3 + λ)

∣∣∣∣
= (k1 + k2 + λ)(k2 + k3 + λ)− k2

2

= λ2 + (k1 + 2k2 + k3)λ + (k1 + k2)(k2 + k3)− k2
2

= λ2 + (k1 + 2k2 + k3)λ + k1k2 + k2k3 + k3k1

and hence

λ =
−(k1 + 2k2 + k3)±

√
(k1 + 2k2 + k3)2 − 4(k1k2 + k2k3 + k3k1)

2

=
−(k1 + 2k2 + k3)±

√
(k1 − k3)2 + 4k2

2

2
.

For k1 = 1 and k2 = 2 this becomes

λ =
−3 − 2k2 ±

√
1 + 4k2

2

2
.

(c) The eigenvalues are shown in Fig. 1. For k2, the eigenvalues are −1 and −2,
corresponding to the natural vibrational frequencies of the two masses in the
absence of any connection between them. As k2 increases, it can be seen that
one eigenvalue tends to −1.5. The connecting spring between the two masses
becomes increasingly like a rigid rod, and thus the masses will oscillate in
unison with each other. Together, they have a mass of 2m, and are subjected to
springs with a total spring constant of k1 + k3 = 3, and thus the frequency of
oscillation is given by 3/2. The other eigenvalue continues to increase according
to −2k2 and corresponds to a rapid vibrational mode within the central spring
itself.

7. (a) The solutions of the equation dy/dt = −y are given by

dy
y

= −dt, log y = −t + C, y(t) = ae−t

where C and a are arbitrary constants. Now consider the set of these solu-
tions, defining ya(t) = ae−t. It can be seen that adding two solutions results in
another,

ya(t) + yb(t) = (a + b)e−t = ya+b(t),
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Figure 1: Eigenvalues for the coupled spring problem as a function of the central spring
constant k2.
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and multiplying a solution by a scalar λ also results in another,

λya(t) = λae−t = yλa(t).

Since the solutions can be added and multiplied following the usual rules of
arithmetic for real numbers, and the real numbers themselves form a vector
space, the solutions must form a vector space.

(b) Due to the presence of the constant term, the differential equation dy/dt = 1− y
is not linear, and thus it should not be expected that its solutions form a vector
space. To see this, note that y(t) = 1 is a solution of dy/dt = 1 − y. If the T was
a vector space, then y(t) = 2 would also be a solution, but

dy/dt = 0, 1 − y = 1.

Hence T does not form a vector space.

8. (a) Let the elements of A and B be aij and bij respectively. Then, using the summa-
tion convention,

[AB]ik = aijbjk, [BA]ik = bijajk

and hence
Tr(AB) = aijbji = bijaij = Tr(BA).

(b) To show that it is not always the case that Tr ABC = Tr CBA, consider the Pauli
spin matrices from Exercise 3. Using the previously established multiplicative
properties, it can be seen that

Tr(ABC) = Tr(iCC) = Tr(iI) = 2i
Tr(CBA) = Tr(−iCC) = Tr(−iI) = −2i

and thus the two expressions are not equal.
Now suppose that the matrix C has elements cij. By extending the argument
from part (a), it can be seen that

[ABC]il = aijbjkckl, [CAB]il = cijajkbkl

and hence
Tr(ABC) = aijbjkckl = cijajkbkl = Tr(CAB).

(c) The trace only involves diagonal entries, so Tr M = Tr MT. If S is symmetric
and A is antisymmetric, then by making use of the result from part (a), it can
be seen that

Tr(SA) = Tr((SA)T) = Tr(ATST) = Tr(−AS) = −Tr(AS) = −Tr(SA)

and hence Tr(SA) = 0.
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9. Using the result from the previous exercise,

Tr(C−1MC) = Tr(MCC−1) = Tr M.

Assume now that the matrix M can be diagonalized by C, so that C−1MC = D. The
diagonal matrix has the same eigenvalues as M, and they are located on the diagonal,
so the sum of eigenvalues is Tr D. By the above relation, it follows that Tr M = Tr D
and is the sum of eigenvalues of M.

7


