
Math 121A: Homework 11 solutions

1. For F(x, y, y′) = y′2 + y2 the Euler Lagrange equation is

0 =
d

dx

(
∂F
∂y′

)
− ∂F

∂y
=

d
dx
(
2y′
)
− 2y = 2(y′′ − y).

This is a second-order linear differential equation. Substituting y = emx, it can be
seen that m2 = 1 and thus m = ±1. The general solution is therefore

y(x) = Aex + Be−x

for some constants A and B.

2. (a) If r′ = dr/dθ, the given functional can be written as

F(θ, r, r′) =
√

r2 + r′2

and hence the Euler equation gives

0 =
d
dθ

(
∂F
∂r′

)
− ∂F

∂r

=
d
dθ

(
r′√

r2 + r′2

)
− r√

r2 + r′2

=
r′′√

r2 + r′2
− r′(r + r′)

(r2 + r′2)3/2 − r√
r2 + r′2

.

Multiplying through by (r2 + r′2)3/2 gives

0 = r′′(r2 + r′2)− r′(rr′ + r′r′′)− r(r2 + r′2)
= r′′r2 + r′′r′2 − rr′2 − r′′r′2 − r3 − rr′2

= r′′r2 − 2rr′2 − r3

and by removing the common factor of r, the equation

r′′r − 2r′2 − r2 = 0 (1)

is obtained. An alternative equation can be obtained by using the Beltrami
identity,

C = F − r′
∂F
∂r′

=
√

r2 + r′2 − r′2√
r2 + r′2

=
r2

√
r2 + r′2

(2)

for some constant C.
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(b) The straight line from (1,−1) to (1, 1) can be expressed in polar coordinates as

r(θ) =
1

cos θ
= sec θ

for the range −π
4 ≤ θ ≤ π

4 . The first and second derivatives are given by

r′(θ) =
sin θ

cos2 θ
, r′′(θ) =

1
cos θ

+
2 sin2 θ

cos3 θ
.

Substituting into Eq. 1 gives

r′′r − 2r′2 − r2 =
1

cos2 θ
+

2 sin2 θ

cos4 θ
− 2

sin2 θ

cos4 θ
− 1

cos2 θ
= 0

and the equation is satisfied. Substituting into Eq. 2 gives

r2
√

r2 + r′2
=

sec2 θ√
1

cos2 θ
+ sin2 θ

cos4 θ

=
1√

cos2 θ + sin2 θ
= 1

and the equation is also satisfied.

3. (a) For F(x, y, y′) = g(x)
√

1 + y′2, the Euler equation gives

0 =
d

dx

(
∂F
∂y′

)
=

d
dx

(
g(x)y′√
1 + y′2

)

and hence
g(x)y′√
1 + y′2

= C

for some constant C. Therefore

[g(x)]2y′2 = C2 + y′2C2

and

y′2 =
C2

[g(x)]2 − C2 .

Hence
y′ =

C√
[g(x)]2 − C2

.

(b) For g(x) = 1, the equation becomes

y′ =
C√

1 − C2
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which is equivalent to y′ = D for some constant D, and hence y(x) = Dx + E
for some constant E. This will satisfy the boundary conditions for

y(x) = 2x − 2.

If g(x) =
√

x, the equation is

y′ =
C√

x − C2

and hence
y(x) =

∫ C√
x − C2

dx = 2C
√

x − C2 + D.

The boundary conditions give

0 = y(1) = 2C
√

1 − C2 + D, 2 = y(2) = 2C
√

2 − C2 + D

If the hint is used, and D is assumed to be zero, then it can be seen that C = 1
is the only solution, and thus

y(x) = 2
√

x − 1.

Without the hint, the solution can be found by eliminating D to obtain

2C
√

2 − C2 = 2 + 2C
√

1 − C2. (3)

Dividing by two and squaring both sides gives

C2(2 − C2) = 1 + C2(1 − C2) + 2C
√

1 − C2

and hence
C2 − 1 = 2C

√
1 − C2.

Squaring both sides again gives

C4 − 2C2 + 1 = 4C2(1 − C2),

which simplifies to
5C4 − 6C2 + 1 = 0.

This can be factorized as

(5C2 − 1)(C2 − 1) = 0

and thus C = ±1,±
√

1/5. Since squaring both sides may introduce more solu-
tions, these possible values for C can then be checked that they indeed satisfy
Eq. 3. It can be verified that C = 1 is the only valid solution.
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Figure 1: Extremal paths for the weighted geodesics considered in question 3.

(c) The two solutions are plotted in Fig. 1. It can be seen that the path for g(x) =
√

x
increases more quickly near x = 1 before leveling off near x = 2. This should
be expected since

√
x is smaller near x = 1, and thus y is able to grow more

quickly in this region without incurring a large penalty in the integral.

4. (a) To derive the more general Euler equation, assume first that y(x) is an extremal
path, and consider Y(x) = y(x) + ϵη(x) where ϵ is a small parameter and η(x)
is a variation that is twice-differentiable. Assume further that η(x1) = η(x2) =
0 and that η′(x1) = η′(x2) = 0. Then

I[Y] =
∫ x2

x1

F(x, Y, Y′, Y′′)dx =
∫ x2

x1

F(x, y + ϵη, y′ + ϵη′, y′′ + ϵη′′)dx

and
0 =

dI
dϵ

∣∣∣∣
ϵ=0

=
∫ x2

x1

(
η

∂F
∂y

+ η′ ∂F
∂y′

+ η′′ ∂F
∂y′′

)
dx. (4)

Consider the second and third terms in this integral. Applying integration by
parts to the second term gives∫ x2

x1

η′ ∂F
∂y′

dx =

[
η

∂F
∂y′

]x2

x1

−
∫ x2

x1

η
d

dx

(
∂F
∂y′

)
dx

= −
∫ x2

x1

η
d

dx

(
∂F
∂y′

)
dx.
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Applying integration by parts twice to the third term gives∫ x2

x1

η′′ ∂F
∂y′′

dx =

[
η′ ∂F

∂y′′

]x2

x1

−
∫ x2

x1

η′ d
dx

(
∂F
∂y′′

)
dx

= −
[

η
d

dx

(
∂F
∂y′′

)]x2

x1

+
∫ x2

x1

η
d2

dx2

(
∂F
∂y′′

)
dx

=
∫ x2

x1

η
d2

dx2

(
∂F
∂y′′

)
dx.

Therefore Eq. 4 can be written as

0 =
∫ x2

x1

η

(
∂F
∂y

− d
dx

(
∂F
∂y′

)
+

d2

dx2

(
∂F
∂y′′

))
dx.

For this to be true for all possible variations η(x), it follows that

d2

dx2
∂F
∂y′′

− d
dx

∂F
∂y′

+
∂F
∂y

= 0.

(b) For the case of F(x, y, y′, y′′) = (y′′)2

2 , the equation from part (a) can be used to
obtain

d2

dx2

(
y′′
)
= 0

and thus
d4y
dx4 = 0.

By integrating four times, it can be seen that the general solution is a cubic,

y(x) = a3x3 + a2x2 + a1x + a0.

To satisfy the boundary conditions y(0) = 1 and y′(0) = 0 it can be seen that
a1 = 0 and a0 = 1. The condition y(1) = −1 gives

−1 = a3 + a2 + 1

and the condition y′(1) = 0 gives

0 = 3a3 + 2a2,

and hence a3 = −4 and a2 = −6, so the solution is

y(x) = 1 − 6x2 + 4x3.

It can be seen that

y′(x) = −12x + 12x2, y′′(x) = −12 + 24x
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Figure 2: Graph of the two functions y and y∗ considered in question 4.

and hence

I[y] =
1
2

∫ 1

0
(−12 + 24x)2dx

=
144
2

∫ 1

0
(1 − 4x + 4x2)dx

= 72
(

1 − 2 +
4
3

)
=

72
3

= 24.

(c) If y∗(x) = cos πx then y′∗(x) = −π sin πx and hence

y∗(0) = cos 0 = 1, y∗(0) cos π = −1,

y′∗(0) = −π sin 0 = 0, y′∗(0) = −π sin π = 0

so the function satisfies the given boundary conditions. It can be seen that

6



y′′∗ (x) = −π2 cos πx and hence

I[y∗] =
1
2

∫ 1

0
(y′′∗ )

2dx

=
1
2

∫ 1

0
π4 cos2 πx dx

=
π4

2

∫ 1

0

1
2
(1 + cos 2πx) dx

=
π4

4

[
x +

sin 2πx
2π

]1

0

=
π4

4
= 24.35227 . . . .

Figure 2 shows plots of y and y∗. It can be seen that the curves are similar, and
thus it should be expected that I[y∗] is close to I[y] in value. It can also be seen
that I[y∗] > I[y] as would be expected since y is an extremal path, and in this
case a minimal path.

5. Assume that the curve is between the two points (x, y) = (±a, 0), and that its shape
is given by y(x), so that y(±a) = 0. The problem involves maximizing

I[y] =
∫ a

−a
2πy

√
1 + y′2dx

subject to the constraint

J[y] =
∫ a

−a

√
1 + y′2dx = l.

This can be carried out by introducing a Lagrange multiplier λ and considering

K[y, λ] = I[y] + λ(J[y]− l)

= −λl +
∫ a

−a
(2πy + λ)

√
1 + y′2dx

=
∫ a

−a
F(λ, x, y, y′)dx

where F(λ, x, y, y′) = (2πy + λ)
√

1 + y′2. Since there is no explicit x dependence in
F, the Beltrami identity can be used: if C is a constant then

C = F − y′
∂F
∂y′

= (2πy + λ)
√

1 + y′2 − (2πy + λ)y′2√
1 + y′2

=
2πy + λ)√

1 + y′2
.
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Hence
C2(1 + y′2) = (2πy + λ)2

which can be rearranged to give

C
dy
dx

=
√
(2πy + λ)2 − C2.

Then ∫ dx
C

=
∫ dy√

(2πy + λ)2 − C2

and by making the substitution 2πy + λ = C cosh u, so that 2πdy = C sinh u du,

x − x0

C
=

1
2π

∫ C sinh u
C sinh u

du =
1

2π

∫
du =

u
2π

and hence

y(x) =
−λ + C cosh 2π(x−x0)

C
2π

where x0 is a constant. From the conditions y(±a) = 0, it follows that x0 = 0 and
the solution is even. Furthermore

0 = y(a) =
−λ + C cosh 2πa

C
2π

and hence
λ = C cosh

2πa
C

.

To determine C, the constraint can be considered, which gives

l =
∫ a

−a

√
1 + y′2dx =

∫ a

−a

√
1 + sinh2 2πx

C
dx

=
∫ a

−a
cosh

2πx
C

dx =
C

2π

[
sinh

2πx
C

]a

−a
=

C
π

sinh
2πa

C
.

Writing α = 2πa/C, this can written as

l
2a

=
sinh α

α
.

While it is not possible to write down an analytic expression for α there will be a
solution to this equation for l/2a ≥ 1, which should be expected, since the straight-
line distance between the two endpoints is 2a. Once α is determined, then an explicit
value for C can be determined. Hence the solution is

y(x) =
C

2π

(
cosh

2πx
C

− cosh
2πa

C

)
.

where C is a function of l and a.
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6. (a) The kinetic energy and potential energy are given by

K =
ma2θ̇2

2
, V = −mga cos θ

respectively, where g is the gravitational acceleration. Hence the Lagrangian is

L(t, θ, θ̇) = K − V =
ma2θ̇2

2
+ mga cos θ.

The Euler–Lagrange equation therefore gives

0 =
d
dt

(
∂L
∂θ̇

)
− ∂L

∂θ
=

d
dt

(
ma2θ̇

)
− (−mga sin θ) = ma2θ̈ + mga sin θ

and hence
aθ̈ + g sin θ = 0.

(b) If θ is small then sin θ ≈ θ and the equation becomes

aθ̈ + gθ = 0.

This is a linear second-order differential equation with a solution

θ(t) = A cos λt + B sin λt

where λ =
√

g/a. Hence the frequency of oscillations is given by

λ

2π
=

1
2π

√
g
a

.

(c) For the case where L has no explicit t dependence, the Beltrami identity is

L − θ̇
∂L
∂θ̇

= C

for some constant C. In this case

ma2θ̇2

2
+ mga cos θ − θ̇

(
ma2θ̇

)
= C

and hence
ma2θ̇2

2
− mga cos θ = −C.

This is equivalent to
K + V = const.

expressing conservation of energy.
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