Math 121A: Homework 11 solutions

1. For F(x,y,y") = y"> + y* the Euler Lagrange equation is
Cd (OF\ OF d . . .,
O_ﬁ(a_y/> @—5(2}/) 2y =2(y" —y)-

This is a second-order linear differential equation. Substituting y = ¢, it can be
seen that m? = 1 and thus m = +1. The general solution is therefore

y(x) = Ae* + Be
for some constants A and B.
2. (a) If 7' =dr/d6, the given functional can be written as

FO,r,7) = V124172

and hence the Euler equation gives
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Multiplying through by (72 + '2)3/2 gives

0 = 7,//(1,2 + r/z) . 7”(7’1” + 1”7’”) . 1’(1’2 + r/Z)
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and by removing the common factor of r, the equation

'r—2r"* —> =0 (1)
is obtained. An alternative equation can be obtained by using the Beltrami
identity,
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for some constant C.



(b)

(a)

The straight line from (1, —1) to (1,1) can be expressed in polar coordinates as

r(0) = C0189 = secf

for the range —% << %. The first and second derivatives are given by

. .2
/(9) = sin 6 #1(6) = 1 2sin“ 6

~ cos26’ ~ cos®  cosdO

<

Substituting into Eq. 1 gives

1 2sin*  _sin®f 1
cos2f ' costo cost® cos2

=21 —? =

and the equation is satisfied. Substituting into Eq. 2 gives

r2 - sec? 6 - 1 _
2 2 o, -2,
Vrt+r _1 . sin?6 cos? § + sin” 6
\/C0529 + cost o \/

and the equation is also satisfied.

For F(x,y,y') = g(x)y/1 4+ y'?, the Euler equation gives

_d (oF\ _d ( gy
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and hence

gy _ -
V1+y?

for some constant C. Therefore

g’y = C*+y>C?

and )
ylz C
[g(x)]? - 2
Hence
y = <
[g(x)]? -
For g(x) = 1, the equation becomes
-



which is equivalent to ¥’ = D for some constant D, and hence y(x) = Dx + E
for some constant E. This will satisfy the boundary conditions for

y(x) =2x —2.
If g(x) = y/x, the equation is

C
r_
4 vVx—C2

x =2CvVx —C?2+D.

and hence

o) = [

The boundary conditions give

0=y(1) =2CV/1-C2+D, 2=y(2)=2CV2-C>+D

If the hint is used, and D is assumed to be zero, then it can be seen that C = 1
is the only solution, and thus

y(x) =2vVx—1.

Without the hint, the solution can be found by eliminating D to obtain

2CV/2—-C?2=2+42Cv1—-C2 3)

Dividing by two and squaring both sides gives
C?2—-C*) =1+C*(1—-C*+2CV1 -2

and hence
C*—1=2CV1-Cx
Squaring both sides again gives

Ct—2C% +1=4C*1-C?),

which simplifies to
5C* —6C*+1=0.

This can be factorized as
(5C2-1)(C2-1)=0

and thus C = £1, £/1/5. Since squaring both sides may introduce more solu-
tions, these possible values for C can then be checked that they indeed satisfy
Eq. 3. It can be verified that C = 1 is the only valid solution.
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Figure 1: Extremal paths for the weighted geodesics considered in question 3.

(c) The two solutions are plotted in Fig. 1. It can be seen that the path for g(x) = /x
increases more quickly near x = 1 before leveling off near x = 2. This should
be expected since /x is smaller near x = 1, and thus y is able to grow more
quickly in this region without incurring a large penalty in the integral.

4. (a) To derive the more general Euler equation, assume first that y(x) is an extremal
path, and consider Y (x) = y(x) + en(x) where € is a small parameter and 7 (x)
is a variation that is twice-differentiable. Assume further that 7(x1) = 7(x2) =
0 and that #'(x1) = #’(x2) = 0. Then

X2

_ 2 !\ _ / ! "
I[Y] = F(x,Y,Y',Y")dx = Fx,y+eny +ey',y" +en’)dx
X1 X1
dl Y2 ( oF  ,0F =, OF
de e /xl <77 ay oy 83/”) " @
Consider the second and third terms in this integral. Applying integration by
parts to the second term gives

[t - [ [oa ()
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(b)

Applying integration by parts twice to the third term gives
2 4 oF [ 9F _/ 4 (2
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Therefore Eq. 4 can be written as

o [T (A (Y ()
e oy dx \9y') ' dx2 \ay’

For this to be true for all possible variations #(x), it follows that

£OEaoF o _
dx29y” dxoy 9oy

For the case of F(x,vy,y',y") = M, the equation from part (a) can be used to
: vy, y 2 q p
obtain P )
Fpe) (v')=0
and thus
d4y
dxt =0

By integrating four times, it can be seen that the general solution is a cubic,
y(x) = azx® 4+ axx® + a1 x + ag.

To satisfy the boundary conditions y(0) = 1 and y’(0) = 0 it can be seen that
a1 = 0 and ap = 1. The condition y(1) = —1 gives

—1=a3+ay+1
and the condition y'(1) = 0 gives
0 = 3a3 + 2ay,
and hence a3 = —4 and a; = —6, so the solution is
y(x) =1 —6x° +42°.
It can be seen that

y(x) = —12x+12x%,  y'(x) = —12 4 24x
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Figure 2: Graph of the two functions y and v, considered in question 4.

and hence

1
Ily] = %/0 (—12 + 24x)2dx

144 1
= 5/ (1 — 4x + 4x%)dx

4
= 72(1-2+
(1-2+3)

72
— =24
3

(c) If y.(x) = cos 7tx then i, (x) = — 7 sin 7tx and hence
¥+(0) = cos0 =1, y«(0) cos T = —1,

¥, (0) = —msin0=0, v,(0)=—msinmt =0

so the function satisfies the given boundary conditions. It can be seen that



1" 2

Y« (x) =T

cos 7tx and hence

(v)%dx

>~

1
_[ =

Y] A
¢ cos? mrx dx
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sin 27tx 1
27T 0

=
+

,.|>| ;L ,.|>| «:L |\)| «:L

= 2435227....

Figure 2 shows plots of y and y.. It can be seen that the curves are similar, and
thus it should be expected that I[y.] is close to I[y] in value. It can also be seen
that I[y.] > I[y] as would be expected since y is an extremal path, and in this
case a minimal path.

5. Assume that the curve is between the two points (x,y) = (%a,0), and that its shape
is given by y(x), so that y(£a) = 0. The problem involves maximizing

Ily] = /a 21ty /1 + y?dx

Ty = /_ 1+ y2dx = 1.

This can be carried out by introducing a Lagrange multiplier A and considering

subject to the constraint

Kly,A] = I[J/]+A(£[y]—l)
= —Al+/ 2ty + A)\/1 + y?dx
= /ua F(A, x,y,y")dx

where F(A, x,y,y") = (2ty + A) /1 + y'2. Since there is no explicit x dependence in
F, the Beltrami identity can be used: if C is a constant then

. 4OF
C = F yay/
27ty + A)y'?
= (2my+A)\/1+ /2_(—
2my +A)\/1+y g7
2ty + A)



Hence
C?(1+y?) = 2y + A)?

which can be rearranged to give

dy _ 2_ 2
e — V@ry+ )2 - c2.

Then

e 7o
¢~ Vemyrarc
and by making the substitution 27ty + A = Ccoshu, so that 2rdy = Csinhu du,

x—xp _ 1 Csmhudu—i/du—i
C  2nJ Csinhu 27 Y

and hence
—A + Ccosh M
y(x) = e
where x( is a constant. From the conditions y(+a) = 0, it follows that xyp = 0 and
the solution is even. Furthermore

—A+ Ccoshz%
and hence 2
A = Ccosh <

To determine C, the constraint can be considered, which gives

a a 27X

| = / \J1+ ’de:/ \/1+ inh? =" dx
. y . sin C
a

2 C 2 f C 2
= /_a cosh %dx = {sinh %} y = sinh g.
Writing « = 27ta/C, this can written as
I sinha

2a «
While it is not possible to write down an analytic expression for « there will be a
solution to this equation for //2a > 1, which should be expected, since the straight-
line distance between the two endpoints is 2a. Once « is determined, then an explicit
value for C can be determined. Hence the solution is

C 27tx 27a
y(x) = e (coshT — cosh T) :

where C is a function of [ and 4.



(a) The kinetic energy and potential energy are given by

ma292

K = ,
2

V = —mgacos6

respectively, where g is the gravitational acceleration. Hence the Lagrangian is

292
L(t,6,6) = K—v=""?

+ mgacosf.

The Euler-Lagrange equation therefore gives

d oL\ AL d g . o .
0= (a_g) T30 d@t (ma 9) — (—mgasin®) = ma*0 + mgasin 6

and hence )
ab + gsinf = 0.

(b) If 6 is small then sin 6 ~ 6 and the equation becomes
af + g6 = 0.
This is a linear second-order differential equation with a solution
6(t) = Acos At + Bsin At
where A = /g/a. Hence the frequency of oscillations is given by

A1 g

2 2\ a
(c) For the case where L has no explicit t dependence, the Beltrami identity is

L—@'a—l.‘zc
00

for some constant C. In this case

242
ma“0 : 24\

> +mgacost — 0 (ma 0) =C

and hence :
ma?6>
y  —mga cosf = —C.
This is equivalent to
K+ V = const.

expressing conservation of energy.



