
Math 121A: Homework 10 solutions

1. By using symmetry and making the substitution z = eiθ the integral can be rewritten
as

I =
∫ π

0

dθ

1 − 2r cos θ + r2 =
1
2

∫ 2π

0

dθ

1 − 2r cos θ + r2 =
1
2i

∮
C

dz
(1 − r(z + z−1) + r2)z

where C is the unit circle. Hence

I =
1
2i

∮
C

dz
−rz2 + (1 + r2)z − r

=
1
2i

∮
C

dz
(rz − 1)(r − z)

.

The integrand has a simple pole at z = r. In addition, if 0 < r < 1, the integral also
has a simple pole at z = 1/r, but since |1/r| > 1 it lies outside the unit circle and its
residue will not contribute. For z = r, the residue can be evaluated as

Res
(

1
(rz − 1)(r − z)

, z = r
)
= lim

z→r

z − r
(rz − 1)(r − z)

=
1

1 − r2 .

Hence, by the residue theorem,

I =
1
2i

(
2πi

1 − r2

)
=

π

1 − r2 .

2. The integral can be written as∫ ∞

−∞

dx
x2 + 4x + 5

=
∫ ∞

−∞

dx
(x + 2 − i)(x + 2 + i)

and thus the integrand has simple poles at z = −2 + i and z = −2 − i. To use
the residue theorem, consider the closing the integral with a large semicircle in the
upper half plane; since the integrand decays according to 1/z2 as |z| → ∞, the
integral around this semicircle will vanish in the limit. Hence the original integral
can be given in terms of the residues at poles in the upper half plane, namely

Res
(

1
z2 + 4z + 5

, z = −2 + i
)

= lim
z→−2+i

z + 2 − i
(z + 2 − i)(z + 2 + i)

=
1

−2 + i + 2 + i

=
1
2i

.

Therefore ∫ ∞

−∞

dx
x2 + 4x + 5

= 2πi
(

1
2i

)
= π.
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3. By using the substitution z = y/
√

2, the Fourier integral can be written as

f̃ (α) =
1

2π

∫ ∞

−∞

e−iαxdx
x4 + 1

=
1

2
√

2π

∫ ∞

−∞

e−iαy/
√

2dy
y4

4 + 1
=

√
2

π

∫ ∞

−∞

e−iβydy
y4 + 4

where β = α/
√

2. The integrand has simple poles at y4 = −4, which corresponds to
(y2 − 2i)(y2 + 2i) = 0, and y = 1 + i, 1 − i,−1 + i,−1 − i. Therefore

f̃ (α) =
√

2
π

∫ ∞

−∞

e−iβydy
(y − 1 − i)(y − 1 + i)(y + 1 − i)(y + 1 + i)

.

For α > 0, the exponential will become small in the lower half plane, and the integral
can be closed with a large semicircle in the lower half plane. This will enclose the
simple poles at y = 1 − i and y = −1 − i. The residues at these two points are

Res
(

e−iβy

y4 + 4
, y = 1 − i

)
= lim

x→1−i

e−iβy

(y − 1 − i)(y + 1 − i)(y + 1 + i)

=
e−iβ(1−i)

2(2 − 2i)(−2i)

=
eβ(−1−i)

−8 − 8i
=

eβ(−1−i)(−1 + i)
16

and

Res
(

e−iβy

y4 + 4
, y = −1 − i

)
= lim

x→−1−i

e−iβy

(y − 1 − i)(y − 1 + i)(y + 1 − i)

=
e−iβ(−1−i)

(−2)(−2 − 2i)(−2i)

=
eβ(−1+i)

8 − 8i
=

eβ(−1+i)(1 + i)
16

.

The integral can now be evaluated using the residue theorem. Due to closing the
contour in the lower half plane, the contour has the reverse orientation, and hence
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an extra minus sign is required. Therefore

f̃ (α) = −2πi

(√
2

π

)(
eβ(−1−i)(−1 + i)

16
+

eβ(−1+i)(1 + i)
16

)

=
e−β

(
e−iβ + eiβ + i(−eiβ + e−iβ)

)
4
√

2

=
e−β

(
e−iβ+eiβ

2 + eiβ−e−iβ

2i

)
2
√

2

=
e−β(cos β + sin β)

2
√

2

=
e−α/

√
2
(

cos α√
2
+ sin α√

2

)
2
√

2
.

If α < 0, then by using the substitution x = −y it can be seen that

f̃ (α) =
1

2π

∫ ∞

−∞

e−iαxdx
x4 + 1

=
1

2π

∫ ∞

−∞

e−iα(−y)dy
(−y)4 + 1

=
1

2π

∫ ∞

−∞

e−i(−α)y)dy
y4 + 1

= f̃ (−α)

and hence the Fourier transform is even. Hence, in general,

f̃ (α) =
e−|α|/

√
2
(

cos α√
2
+ sin |α|√

2

)
2
√

2
.

4. The Laurent series of the integrand at z = 0 is

1 − cos x
x2 =

1
x2

(
1 −

(
1 − x2

2!
+

x4

4!
− . . .

))
=

1
x2

(
x2

2
− x4

24
. . .
)
=

1
2
− x2

24
+ . . . .

Since there is no term with a negative power, the point z = 0 is a removeable
singularity, and hence the integrand can be extended to an analytic function there.
Let J be an arbitrary contour from −∞ to ∞ that bends below z = 0; since the
integrand is analytic, the integral along this contour will be the same as along the
real line. Then

I =
∫

J

1 − cos z
z2 dz

=
∫

J

2 − eiz − e−iz

2z2 dz

=
∫

J

dz
z2 −

∫
J

eiz

2z2 dz −
∫

J

e−iz

2z2 dz.

All three integrals feature a pole of order 2 at z = 0. The first and third integrals
can be closed by using large semicircles in the lower half plane; no poles will be
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enclosed and thus these integrals will be zero. The second integral must be closed
in the upper half plane, and thus the pole at z = 0 will contribute. Note that

eiz

2z2 =
1

2z2

(
1 + iz +

(iz)2

2!
+ . . .

)
=

1
2z2 +

i
2z

− 1
4
+ . . .

and thus the residue is i
2 . Hence

I = 0 − 2πi
(

i
2

)
− 0 = π.

5. The integration can be carried out using a keyhole contour. A branch cut along the
positive real axis can be introduced, and

√
z can be taken to be positive and real

above the cut. The integral around a circular contour of radius r is given by∫ 2π

0

√
reiθ/2reiθi dθ

1 + r2e2iθ = i
∫ 2π

0

e3iθ/2r3/2 dθ

1 + r2e2iθ

This will decay to zero as r → ∞ due to the presence of the r2 term in the denomina-
tor. It will also decay to zero as r → 0 due to the r3/2 term in the numerator. Thus
the only two components on the keyhole contour are the integral along the real axis
above and below the branch cut. The integral above the contour is given by

I =
∫ ∞

0

√
r

1 + r2 dr

and the integral below the contour is given by

J = −
∫ ∞

0

√
re2iπ

1 + r2e4iπ dr = −eiπ
∫ ∞

0

√
r

1 + r2 dr = I.

The integrand has two simple poles at ±i, and the keyhole contour will enclose both
of these. The residue at z = i is given by

Res
( √

z
1 + z2 , z = i

)
= lim

z→i

√
z(z − i)

(z + i)(z − i)
=

eiπ/4

2i
=

1 + i
2
√

2i

and the residue at z = −i is given by

Res
( √

z
1 + z2 , z = −i

)
= lim

z→−i

√
z(z + i)

(z + i)(z − i)
=

e3iπ/4

−2i
=

1 − i
2
√

2i
.

Hence, by using the residue theorem,

I + J = 2πi
(

1 + i
2
√

2i
+

1 − i
2
√

2i

)
=

π(1 + i + 1 − i)√
2

= π
√

2

and since I = J, ∫ ∞

0

√
x

1 + x2 dx =
π√

2
.
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6. (a) Consider the integral ∮
C

epx

1 + ex dx

where C is a closed rectangular contour with vertices at ±A and ±A + 2iπ. The
integrand has singularities at 0 = 1 + ex which corresponds to x = (2n + 1)iπ
where n is an integer. Hence the contour encloses one singularity at x = iπ. By
writing x = iπ + y, it can be seen that for small y,

epx

1 + ex =
epiπepy

1 + eiπ+y

=
eiπp

(
1 + py + p2y2

2 + . . .
)

1 − ey

=
eiπp

(
1 + py + p2y2

2 + . . .
)

1 −
(

1 + y + y2

2 + . . .
)

= −
eiπp

(
1 + py + p2y2

2 + . . .
)

y + y2

2 + . . .

= − eiπp

y

(
1 + py +

p2y2

2
+ . . .

)(
1 − y

2
+ . . .

)
and hence the residue at iπ is −eiπp. Now consider the integral around C. The
integration from A to A + 2iπ is given by∫ 2π

0

ep(A+iy)

1 + eA+iy idy

and this will vanish in the limit as A → ∞, since the eA in the denominator will
dominate over the epA in the numerator (since p < 1). Similarly, the integration
from −A + 2iπ to −A is given by

−
∫ 2π

0

ep(−A+iy)

1 + e−A+iy idy

and this will also vanish due to the e−Ap term in the numerator. In the limit as
A → ∞, the two contributions will come from the integral along the real line,

I =
∫ ∞

−∞

epx

1 + ex dx,

and the integral from 2πi − ∞ to 2πi + ∞,

J = −
∫ ∞

−∞

ep(x+2πi)

1 + ex+2πi dx = −e2πip
∫ ∞

−∞

epx

1 + ex dx = −e2πip.
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By using the residue theorem

I + J = 2πi
(
−eiπp

)
and therefore

I(1 − e2πip) = −2πieiπp.

Hence ∫ ∞

−∞

epx

1 + ex dx = I =
2πieiπp

e2πip − 1
=

2iπ
eπip − e−πip =

π

sin πp
.

(b) By making the substitution y = ex, so that dy/y = dx, the integral can be
written as ∫ ∞

0

yp dy
(1 + y)y

=
∫ ∞

0

yp−1

(1 + y)
dy.

One definition of the beta function is

B(p, q) =
∫ ∞

0

yp−1 dy
(1 + y)p+q

and it can be seen that this matches the given expression for q = 1 − p, and
therefore

B(1 − p, p) =
∫ ∞

0

yp−1 dy
(1 + y)

=
π

sin πp
.

Using the identity linking beta functions and gamma functions, it can be seen
that

π

sin πp
=

Γ(p)Γ(1 − p)
Γ (p + (1 − p))

=
Γ(p)Γ(1 − p)

Γ(1)
= Γ(p)Γ(1 − p).

7. Since the integrand is even, the integral can be written as∫ ∞

0

x dx
sinh x

=
1
2

∫ ∞

−∞

x dx
sinh x

.

The hyperbolic sine function can be written in terms of the sine function as

sinh x =
ex − e−x

2
=

e−i(ix) − ei(ix)

2
=

ei(ix) − e−i(ix)

2i(i)
=

sin ix
i

.

The zeros of sin x are at x = nπ for any integer n, and hence the zeros of sinh z are
at z = inπ. Hence 1/ sinh z has simple poles at z = inπ. The function z/ sinh z will
also have simple poles at these locations, with the possible exception at z = 0, where
the function has a Laurent series

z
sinh z

=
z

z + z3

3! + . . .
=

1

1 + z2

6 + . . .
= 1 − z2

6
+ . . . .
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Since there is no term with a negative power in this expression, z = 0 is a removeable
singularity. Consider integrating around the rectangle with corners at ±R and ±R +
iπ. The integration on the line from R to R + iπ will be∫ π

0

(R + iy)idy
eR+iy − e−R−iy

which will vanish as R → ∞ due to the presence of the eR term in the denominator.
A similar argument can be used to determine that the integral along −R to −R + iπ
will also vanish in the limit. The integral from R + iπ to R − iπ will go over the
simple pole at z = iπ. To evaluate the residue at this point, write z = y + iπ, and
hence

z
sinh z

=
y + iπ

sinh(y + iπ)
=

y + iπ
− sinh y

=
y + iπ

−y + y3

6 − . . .
=

y + iπ

y
(

1 − y2

6 + . . .
)

=
−1
y

(iπ + y)
(

1 +
y2

6
− . . .

)
=

−iπ
y

+ . . .

where the identity sinh(y + iπ) = − sinh y has been employed. Hence the residue is
−iπ. Since residues on the boundary of a contour give a half contribution it follows
that

2πi
(
−iπ

2

)
=

∫ ∞

−∞

x dx
sinh x

−
∫ ∞

−∞

(x + iπ) dx
sinh(x + iπ)

=
∫ ∞

−∞

x dx
sinh x

−
∫ ∞

−∞

(x + iπ) dx
− sinh x

=
∫ ∞

−∞

x dx
sinh x

+
∫ ∞

−∞

x dx
− sinh x

+ iπ
∫ ∞

−∞

dx
sinh x

.

The first two integrals are identical, and the final integral can be neglected since the
integrand is odd. Hence ∫ ∞

−∞

x dx
sinh x

=
π2

2
and therefore ∫ ∞

0

x dx
sinh x

=
π2

4
.

An alternative approach is to integrate around the rectangle with corners at ±R and
±R + iπ

2 . This contour encloses no singularities so

0 =
1
2

∫ ∞

−∞

z dz
sinh z

− 1
2

∫ ∞

−∞

(x + iπ
2 )dx

sinh
(

x + iπ
2

)
7



and hence ∫ ∞

−∞

z dz
sinh z

=
∫ ∞

−∞

(x + iπ
2 )dx

sinh
(

x + iπ
2

)
=

∫ ∞

−∞

(x + iπ
2 )dx

i cosh x

=
π

2

∫ ∞

−∞

dx
cosh x

where the integration of the x
cosh x term can be neglected since this function is odd.

This can be written as ∫ ∞

−∞

z dz
sinh z

= π
∫ ∞

−∞

dx
ex + e−x

= π
∫ ∞

−∞

ex dx
1 + e2x

=
π

2

∫ ∞

−∞

ey/2 dy
1 + ey

=
π

2

(
π

sin π
2

)
=

π2

4

by making use of the result from part (a) of the previous exercise. Hence∫ ∞

0

x dx
sinh x

=
π2

4
.

8. By using the Bromwich inversion integral, the inverse Laplace transform is given by

f (t) =
1

2πi

∫ c+i∞

c−i∞

pept dp
(p + 1)(p2 + 4)

where the constant c is chosen so that the contour lies to the right of all of the poles
of the integrand. The integrand can be written as

pept

(p + 1)(p + 2i)(p − 2i)

and thus has simple poles at p = −1 and p = ±2i. The residues at p = 1 is given by

Res
(

pept

(p + 1)(p2 + 4)
, p = −1

)
= lim

p→−1

p(p + 1)ept

(p + 1)(p2 + 4)

=
−e−t

1 + 4
= − e−t

5
.
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The residues at p = ±2i are given by

Res
(

pept

(p + 1)(p2 + 4)
, p = ±2i

)
= lim

p→±2i

p(p ∓ 2i)ept

(p + 1)(p + 2i)(p − 2i)

= lim
p→±2i

pept

(p + 1)(p ± 2i)

=
e±2it

2(1 ± 2i)

=
e±2it(1 ∓ 2i)

10
.

Hence, by closing the integration with a large semicircle in the left half plane, which
will enclose all three poles within the contour,

f (t) =
2πi
2πi

(
− e−t

5
+

e2it(1 − 2i)
10

+
e2it(1 + 2i)

10

)
=

1
5

(
−e−t +

1
2

(
e2it + e−2it

)
+

2
2i

(
e2it − e−2it

))
=

−e−t + cos 2t + 2 sin 2t
5

.
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