Math 121A: Homework 1 solutions

1. Let a; be the amount of the impurity removed at the kth stage. Then a; = 1/», and
A1 = Ax/ N, 80 g1 = n~ (1) The total amount of impurity removed is
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This is a geometric series, and hence
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If n = 2,then T = 1 and all of the impurity will be removed. If n = 3, then T = 1/2
and at least of half of the impurity will remain.

2. Since 2" grows much more rapidly than 1, it should be expected that limy,_,c, 2" /1% =
0. However to see this explicity, note that for n > 3, the binomial expansion can be
used to see that
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it follows that lim,_,e0 2" /1% = co.

3. The partial sum of the first N terms is
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and hence
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(a) Initially, the car and bee are moving toward each other at speed b + ¢, and will

reach each other at t = d/(b + ¢). After this time, the bee will have travelled
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Since the bee travels the same distance back toward Q, it must be the case that
a, = a;. To determine a3, first note that the bee will reach Q for the second time
at time
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The distance from the car from the point Q at this time is therefore
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The problem is now equivalent to the original configuration, except that the car
is at a distance d’ from Q instead of d, and thus by reference to Eq. 1 it can be

seen that
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Again, a4 = a3. To determine as, note that the car is now a distance
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so that another factor of (b — ¢)/(b + c) will be introduced each time the bee
carries out a zig-zag. In general, therefore, the distances are given by

bd (b—c\"!
azn:azn—lzb—_’_c b+ .

(b) The sum of the series is
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This result should be expected. The car reaches Q at time ¢ = d/c. Since the
bee is moving with constant speed c during this process, it will cover a distance
of bd /c in this interval.

(c) Now consider the case when the bee moves at a speed b’ when moving toward
the car. Initially, the car and the bee are moving toward each other with speed
b’ + ¢, and will reach each other att = d/ (V' + ¢). Again, a; = a1. The bee will
reach Q for a second time at time
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This distance of the car from the point Q at this time is therefore
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Using the same logic as previously, it follows that
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The total distance covered by the bee is
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If b = U/, this agress with the result from part (b).

5. For all natural numbers 1, note that
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and hence

Since
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diverges, it follows that Y5> ; 1/ (1 + 3) diverges via the comparison test.

. To determine the convergence properties of
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consider the integral
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and since log x increases without limit, the integral diverges. Hence the series di-
verges by the integral test.

. The coefficients of the series are a, = €" /+/n!. Hence, using the ratio test,
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so the series converges.

. For the given series, a, = (logn)~!. Note that |a,,,1| < |a,| and lim,_,co 2, = 0 and
hence it must converge by the alternating series theorem.

. By using the standard test,
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and thus the radius of convergence is R = 1/p = 3/2. If x = 3/2, the series becomes
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which increases without limit and hence diverges. If x = —3/2, the series becomes
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which also diverges. Hence the exact interval of convergence is —3/2 < x < 3/2.
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By using the standard test,
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and hence the radius of convergence is R = 1. If x = 1 the series becomes
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which diverges by the integral test, and if x = —1 the series becomes
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which converges by the alternating series test. Hence the exact interval of
convergenceis —1 < x < 1.

Show that the power series
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converges for all real numbers y. If |y| < 1, then
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Therefore if x = y/(1 + y?), then |x| < 1 for any choice of y, and thus
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will converge, since x lies within the interval of convergence.



