
Math 121A: Sample midterm solutions

1. To find a Green function solution, consider solving the given equation for an impul-
sive input of the form f (x) = δ(x − x′). In the regions x > x′ and x < x′, solutions
of the form y = emx can be searched for, which upon substitution into the differential
equation gives

m2 − k2 = 0

and hence m = ±k. To satisfy the boundary conditions as x → ±∞, the solution
must be of the form

y(x) =
{

Aemx for x < x′,
Be−mx for x > x′,

where A and B are constants. To satisfy continuity at x′ it follows that

Aemx′ = Be−mx′

and to satisfy y′+(x′)− y′−(x′) = 1 it follows that

−Bme−mx′ − Amemx′ = 1

and thus

A = − e−mx′

2m
, B = − emx′

2m
so the solution can be written as

y(x) = − e−m|x−x′|

2m
.

Hence the Green function solution for an arbitrary source term f (x) can be written
as

y(x) =
∫ ∞

−∞

(
− e−m|x−x′|

2m

)
f (x′)dx′.

2. (a) The Fourier transform is

h̃λ(α) =
1

2π

∫ ∞

−∞
exp

(
−λx2 − ixα

)
dx

=
1

2π

∫ ∞

−∞
exp

(
−λ

(
x − iα

2λ

)2

− α2

4λ

)
dx

=
e−

α2
4λ

2π

√
π

λ

=
e−

α2
4λ

√
4πλ

.
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Figure 1: Graphs of the Gaussians considered in question 2, for the case of λ = 1 and
µ = 2.



(b) The convolution is given by

(hλ ∗ hµ)(x) =
∫ ∞

−∞
hλ(ξ)hµ(x − ξ)dξ

=
∫ ∞

−∞
exp

(
−λξ2 − µ(x − ξ)2

)
dξ

=
∫ ∞

−∞
exp

(
−(λ + µ)ξ2 + 2µxξ − µx2

)
dξ

=
∫ ∞

−∞
exp

(
−(λ + µ)

(
ξ − µx

(λ + µ)

)2

+
µ2x2

λ + µ
− µx2

)
dξ

=

√
π

λ + µ
exp

(
+

µ2x2

λ + µ
− µ2 + λµ

λ + µ
x2
)

=

√
π

λ + µ
exp

(
− λµ

λ + µ
x2
)

.

(c) If λ = 1 and µ = 2 then

g(x) =
√

π

3
exp

(
−2x2

3

)
.

and thus g is a Gaussian that is wider than both hλ and hµ. The three curves are
plotted in Fig. 1.

(d) Using the result from part (a) it can be seen that

2πh̃λ(α)h̃µ(α) =
exp

(
− α2

4

(
1
λ + 1

µ

))
2
√

λµ
.

Using the result from part (b),

g̃(α) =

√
π

λ + µ

exp
(
− α2

4

(
λ+µ
λµ

))
√

4πλµ

√
λ + µ

=
exp

(
− α2

4

(
1
λ + 1

µ

))
2
√

λµ

and thus the two expressions are equal as expected.

3. (a) Taking the Fourier transform in x and the Laplace transform in t gives

F̃(α, p) =
1

2π

∫ ∞

−∞
dx
∫ ∞

0
dt f (x, t)e−pt−ixα.



Taking the transform of the equation ft + c fx = b fxx gives

pF̃ − f̃ (α, 0) + ciαF̃ = b(iα)2F̃.

The Fourier transform of the initial condition is

f̃ (α, 0) =
1

2π

∫ ∞

−∞
δ(x)e−ixαdx =

1
2π

and hence the transformed equation can be written as

(p + icα + bα2)F̃ =
1

2π
.

Therefore
F̃(α, p) =

1
2π(p + icα + bα2)

.

Since the Laplace transform of e−qt is 1/(p + q), it follows that

f̃ (α, t) =
e−(icα+bα2)t

2π

Taking the inverse Fourier transform gives

f (x, t) =
1

2π

∫ ∞

−∞
e−(icα+bα2)t+iαxdα

=
1

2π

∫ ∞

−∞
exp

(
−bt

(
α − i(x − ct)

2bt

)2

− (x − ct)2

4bt

)
dα

=
1√

4πbt
exp

(
− (x − ct)2

4bt

)
.

(b) By making use of part (a) and translational symmetry in x, it can be seen that if
the initial condition is g(x) = δ(x − x′) then the solution is

f (x, t) =
1√

4πbt
exp

(
− (x − x′ − ct)2

4bt

)
.

The Green function solution for an arbitrary initial condition g(x) is therefore

f (x, t) =
1√

4πbt

∫ ∞

−∞
g(x′) exp

(
− (x − x′ − ct)2

4bt

)
dx′.



(c) For the case of g(x) = e−ax the solution is given by

f (x, t) =
1√

4πbt

∫ ∞

−∞
exp

(
− (x − x′ − ct)2

4bt
− ax′

)
dx′

=
1√

4πbt

∫ ∞

−∞
exp

(
−x′2 + 2(ct − x)x′ + (ct − x)2 + 4btax′

4bt

)
dx′

=
1√

4πbt

∫ ∞

−∞
exp

(
−x′2 + 2(ct − x + 2bta)x′ + (ct − x)2

4bt

)
dx′

=
1√

4πbt

∫ ∞

−∞
exp

(
− (x′ + ct − x + 2bta)2

4bt

+
(ct − x + 2bta)2 − (ct − x)2

4bt

)
dx′

=
1√

4πbt

√
4btπ exp

(
(ct − x)4bta + 4b2t2a2

4bt

)
= e−ax+ta(c+ba).

It can be seen that f (x, 0) = e−ax and hence the initial condition is satisfied. The
left hand side of the partial differential equation is

∂ f
∂t

+ c
∂ f
∂x

= a(c + ba) f − ca f = ba2 f

and the right hand side is

b
∂2 f
∂x2 = ba2 f

so the partial differential equation is satisfied.

4. (a) The zeroth cosine term is

a0 =
1
π

∫ π

−π
f (x)dx =

1
π

π = 1.

The other cosine terms are given by

an =
1
π

∫ π

−π
f (x) cos nx dx

=
1
π

∫ π

0
cos nx dx

=
1
π

[
sin nx

n

]π

0
= 0.



The sine terms are given by

bn =
1
π

∫ π

−π
f (x) sin nx dx

=
1
π

∫ π

0
sin nx dx

=
1
π

[
−cos nx

n

]π

0

=
1

nπ
[1 − cos nπ]

=

{ 2
nπ for n odd,
0 for n even.

Hence

f (x) =
1
2
+

∞

∑
n=0

2 sin nx
nπ

.

(b) The left hand side of the Parseval equation is

1
π

∫ π

−π
| f (x)|2dx =

1
π

∫ π

0
dx = 1

and the right hand side is

a2
0

2
+

∞

∑
n=1

(a2
n + b2

n) =
1
2
+

4
π2

∞

∑
n=0

1
(2n + 1)2 .

Equating the two gives
1
2
=

4
π2

∞

∑
n=0

1
(2n + 1)2

which can be rearranged as

∞

∑
n=0

1
(2n + 1)2 =

π2

8
.

5. First note that the Fourier transform of f (t) = e−at is

F(p) =
∫ ∞

0
e−pt dt =

∫ ∞

0
e−(a+p)t dt =

[
e−(a+p)t

a + p

]∞

0

=
1

a + p
.

The Laplace transform of the equation is therefore given by

p2Y(p)− py(0)− y′(0) + 6(pY(p)− y(0)) + 8Y(p) =
1

p + 3



and hence
(p2 + 6p + 8)Y(p) = (p + 6) +

1
p + 3

.

Therefore

Y(p) =
p + 6

(p + 2)(p + 4)
+

1
(p + 2)(p + 3)(p + 4)

=
1

p + 2
+

2
(p + 2)(p + 4)

+
1

2(p + 3)

(
1

p + 2
− 1

p + 4

)
=

1
p + 2

+
1

p + 2
− 1

p + 4
+

1
2

(
1

p + 2
− 2

p + 3
+

1
p + 4

)
=

5
2(p + 2)

− 1
p + 3

− 1
2(p + 4)

and hence

y(t) =
5e−2t − 2e−3t − e−4t

2
.


