Sample midterm 1 solutions
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For the first series, note that
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is a convergent geometric series. Hence, by the comparison test,
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is a convergent series. For the second series, it can be seen that the terms sinnm/4
do not converge to zero as n increases. Hence, by the preliminary test, it follows that
the series does not converge. For the final series, consider the integral
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/ xlogxdx = log(log(x)) + C.

Since logx — oo as x — oo, it follows that log(log(x)) — oo as x — co. Hence, by
using the integral test, the series
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diverges.

(a) If the coefficients in the power series are defined to be a,, = 3", then the radius
of convergence can be found by first calculating
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Hence the radius of convergence is R = 1/p = 3. To determine the exact
interval of convergence, consider the endpoints at y = £R. If y = 3, then

oog_
L

which diverges by the preliminary test. If y = —3, then
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which also diverges by the preliminary test. Hence the exact interval of conver-
genceis —3 <y < 3.



Figure 1: Sketch of the quartic function f(x) = 3 + (x> — 1) (x? — 4) considered in question
2. The thin dashed line corresponds to y = 3.

(b) The function is plotted in Fig. 1. To sketch this function, note that it is even, and
takes the value of 3 for x = +1, 2.

(c) The series
o f(x)"
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will converge if and only if —3 < f(x) < 3. By reference to Fig. 1, it can be seen
that this will occurif -2 <x < —lorl <x < 2.

3. Let the triangle occupy the domain T. Its mass is given by

m=/Tp(x,y)dxdy = /01 /Ol_xp(x,y)dy) dx
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To find the center of mass, the first moments in the x direction,

xo(x,y)dxdy = 1x 1_xp(x,y)dy dx
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and in the y direction,
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can be computed. The center of mass is then given by 6(1/24,1/12) = (1/4,1/2).

. Tobegin, any extrema within the interior or the square can be found by taking partial
derivatives,

of of
Loox—2p)—1, E=-4x-2

5y = 2(x = 2y) 3y (x —2y)
and then searching for values of x and y where both expressions are zero. However,
the second equation implies that x = 2y, and then the first equation is not satis-
fied. Hence there are no extrema in the interior of the square. On the horizontal
boundaries, extrema can be found by differentiation,

flx,=1) = (x+2*+x=x*+5x+4, 0=filx,~1)=2x+5  x=-5/,
f(x,l):(x—Z)Z_x:x2_5x+4, Ofo(X,l):Zx—5, x:+5/2’

but both values where the extrema are achieved lie outside the square. On the
vertical boundaries, extrema are given by

f-Ly) =+ 2) +1=4 +4y+2,  0=f(-Ly) =8y+4, y=-1/2
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Figure 2: Contours of the function f(x,y) = (x — 2y)? — x considered in question 4.



flLy)=0-2y)?-1=4’-4y, 0=f(Ly)=8y—-4 y=12
which give two values, f(—1,—1/2) = 1 and f(1,1/2) = —1. Finally, the extrema
could be achieved at corners:

f(-1,-1)=2, f(-1,1)=10, f(1,-1)=8,  f(1,1)=0.

Hence the minimum value is —1 attained at (1,1/2) and the maximum value is 10
attained at (—1,1). Contours of the function are shown in Fig. 2, which confirm
these results.

. The area of the tent surface is given by

A=1h+1Vh?+ 12 (1)

To maximize the volume while keeping the area constant, a Lagrange multiplier A
can be introduced, and the augmented function

2
V(h 1)) = % +A <Zh+l\/h2+lz —A) .

can then be maximized. Taking partial derivatives with respect to the first three
parameters gives
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O_W = hl+A<h+R+E) (3)

where R = v/h? + 1. For a physical solution, it can be assumed that 7 > 0 and [ > 0.
Equation 2 can be rearranged to give
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which can be substituted into Eq. 3 to give
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This can be rearranged as
2h(R +h) = Rh + R? 412

and hence
Rh = 217 — 1.
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Squaring both sides gives
R*1?* = 41* + h* — 4n*1%.
and since R? = h? + [? it follows that
W+ W12 = 41* + h* — 4nP?
SO
5h* = 412,

Therefore h = 21/+/5. Substituting into Eq. 1 gives

A= (\%+%) = 12V5.
and hence I = 5-1/4\/A and h = 2 x 573/4\/A. The volume is then given by

V= lz_h — 5—5/4A3/2
5 .



