
Sample midterm 1 solutions

1. For the first series, note that
1

4n + (1/2)n <
1
4n

for all n, and
∞

∑
n=0

1
4n

is a convergent geometric series. Hence, by the comparison test,

∞

∑
n=0

1
4n + (1/2)n

is a convergent series. For the second series, it can be seen that the terms sin nπ/4
do not converge to zero as n increases. Hence, by the preliminary test, it follows that
the series does not converge. For the final series, consider the integral∫ 1

x log x
dx = log(log(x)) + C.

Since log x → ∞ as x → ∞, it follows that log(log(x)) → ∞ as x → ∞. Hence, by
using the integral test, the series

∑
n=2

1
n log n

diverges.

2. (a) If the coefficients in the power series are defined to be an = 3n, then the radius
of convergence can be found by first calculating

ρ = lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 3n

3n+1

∣∣∣∣ = 1
3

.

Hence the radius of convergence is R = 1/ρ = 3. To determine the exact
interval of convergence, consider the endpoints at y = ±R. If y = 3, then

∞

∑
n=0

yn

3n =
∞

∑
n=0

3n

3n =
∞

∑
n=0

1,

which diverges by the preliminary test. If y = −3, then

∞

∑
n=0

yn

3n =
∞

∑
n=0

3n

3n =
∞

∑
n=0

(−1)n,

which also diverges by the preliminary test. Hence the exact interval of conver-
gence is −3 < y < 3.
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Figure 1: Sketch of the quartic function f (x) = 3+ (x2 − 1)(x2 − 4) considered in question
2. The thin dashed line corresponds to y = 3.

(b) The function is plotted in Fig. 1. To sketch this function, note that it is even, and
takes the value of 3 for x = ±1,±2.

(c) The series
∞

∑
n=0

f (x)n

3n

will converge if and only if −3 < f (x) < 3. By reference to Fig. 1, it can be seen
that this will occur if −2 < x < −1 or 1 < x < 2.

3. Let the triangle occupy the domain T. Its mass is given by

m =
∫

T
ρ(x, y) dx dy =

∫ 1

0

(∫ 1−x

0
ρ(x, y)dy

)
dx

=
∫ 1

0

(∫ 1−x

0
ydy

)
dx

=
1
2

∫ 1

0
(1 − 2x + x2) dx

=
1
2

(
1 − 2

2
+

1
3

)
=

1
6
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To find the center of mass, the first moments in the x direction,∫
T

xρ(x, y) dx dy =
∫ 1

0
x
(∫ 1−x

0
ρ(x, y)dy

)
dx

=
∫ 1

0
x
(∫ 1−x

0
ydy

)
dx

=
∫ 1

0
x
(
(1 − x)2

2

)
dx

=
1
2

∫ 1

0
(x − 2x2 + x3)dx

=
1
2

(
1
2
− 2

3
+

1
4

)
=

1
24

,

and in the y direction,∫
T

yρ(x, y) dx dy =
∫ 1

0

(∫ 1−x

0
yρ(x, y)dy

)
dx

=
∫ 1

0

(∫ 1−x

0
y2dy

)
dx

=
∫ 1

0

(
(1 − x)3

3

)
dx

=
1
3

∫ 1

0
(1 − 3x + 3x2 − x3)dx

=
1
3

(
1 − 3

2
+

3
3
− 1

4

)
=

1
12

can be computed. The center of mass is then given by 6(1/24, 1/12) = (1/4, 1/2).

4. To begin, any extrema within the interior or the square can be found by taking partial
derivatives,

∂ f
∂x

= 2(x − 2y)− 1,
∂ f
∂y

= −4(x − 2y)

and then searching for values of x and y where both expressions are zero. However,
the second equation implies that x = 2y, and then the first equation is not satis-
fied. Hence there are no extrema in the interior of the square. On the horizontal
boundaries, extrema can be found by differentiation,

f (x,−1) = (x + 2)2 + x = x2 + 5x + 4, 0 = fx(x,−1) = 2x + 5, x = −5/2,

f (x, 1) = (x − 2)2 − x = x2 − 5x + 4, 0 = fx(x, 1) = 2x − 5, x = +5/2,

but both values where the extrema are achieved lie outside the square. On the
vertical boundaries, extrema are given by

f (−1, y) = (1 + 2y)2 + 1 = 4y2 + 4y + 2, 0 = fy(−1, y) = 8y + 4, y = −1/2,
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Figure 2: Contours of the function f (x, y) = (x − 2y)2 − x considered in question 4.
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f (1, y) = (1 − 2y)2 − 1 = 4y2 − 4y, 0 = fy(1, y) = 8y − 4, y = 1/2,

which give two values, f (−1,−1/2) = 1 and f (1, 1/2) = −1. Finally, the extrema
could be achieved at corners:

f (−1,−1) = 2, f (−1, 1) = 10, f (1,−1) = 8, f (1, 1) = 0.

Hence the minimum value is −1 attained at (1, 1/2) and the maximum value is 10
attained at (−1, 1). Contours of the function are shown in Fig. 2, which confirm
these results.

5. The area of the tent surface is given by

A = lh + l
√

h2 + l2. (1)

To maximize the volume while keeping the area constant, a Lagrange multiplier λ
can be introduced, and the augmented function

V(h, l, λ) =
hl2

2
+ λ

(
lh + l

√
h2 + l2 − A

)
.

can then be maximized. Taking partial derivatives with respect to the first three
parameters gives

0 =
∂V
∂h

=
l2

2
+ λ

(
l +

lh
R

)
(2)

0 =
∂V
∂l

= hl + λ

(
h + R +

l2

R

)
(3)

where R =
√

h2 + l2. For a physical solution, it can be assumed that h > 0 and l > 0.
Equation 2 can be rearranged to give

λ = − Rl
2(R + h)

,

which can be substituted into Eq. 3 to give

hl =
Rl

2(R + h)

(
h + R +

l2

R

)
.

This can be rearranged as

2h(R + h) = Rh + R2 + l2

and hence
Rh = 2l2 − h2.
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Squaring both sides gives

R2h2 = 4l4 + h4 − 4h2l2.

and since R2 = h2 + l2 it follows that

h4 + h2l2 = 4l4 + h4 − 4h2l2

so
5h2 = 4l2.

Therefore h = 2l/
√

5. Substituting into Eq. 1 gives

A = l2
(

2√
5
+

3√
5

)
= l2

√
5.

and hence l = 5−1/4
√

A and h = 2 × 5−3/4
√

A. The volume is then given by

V =
l2h
2

= 5−5/4A3/2.

6


