Math 121A: Midterm 2 solutions

1. Consider the differential equation
¥y’ + 11y +30y =0
for the function y(t) on the range 0 < t < oo.
(a) Calculate the Laplace transform of the function f(t) = e~ .
Answer: The Laplace transform is
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(b) Determine y(t) using Laplace transforms for the conditions y(0) = 0, y'(0) = 1.

Answer: Taking the Laplace transform of the equation gives

[PzY(P) —py(0) — y’(O)] +11[pY(p) — y(0)] +30Y(p) =0

and hence
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Using the result from part (a),

(c) Determine y(t) using Laplace transforms for the conditions y(0) = 1, ' (0) = 0.

Answer: By reference to part (b), with the given boundary conditions,
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Y(p) = (

Hence by using part (a),
y(t) = 6e > — 5e76
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Figure 1: Plots of the functions f and g considered in question 2.

2. Consider the function

f(x):{l for-1<x<1,

0 otherwise.

(a) Calculate the convolution g = f * f. Sketch f and g.

Answer: The convolution is given by

g0 = [ f@fx-ope
For 0 < x < 2 thisis R
g(x) :/ 1di=2—x
X
and for x > 2, g(x) = 0. Since g is even it follows that

(x) = 2 — |x| for x| < 2,
=10 for |x| > 2.

Plots of f and g are shown in Fig. 1.



(b) Determine the Fourier transform of f.

Answer: The Fourier transform is
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(c) Determine the Fourier transform of g either by direct calculation, or by making
use of standard results and your answer from part (b).

Answer: By making use of the standard result for convolutions, the Fourier
transform is given by
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3. Consider the differential equation

subject to y(0) = 0, and y'(1) = 0.

(a) Calculate a Green function solution of the form

Answer: Consider solving the equation for an impulsive input, f(x) = 6(x —
x"). In the regions x > x’ and x < x’ the solution has the form

y(x) = Ax + B.

To satisfy the boundary conditions, it must be y(x) = Ax for x < x’ and y(x)
B for x > x’. To ensure continuity, Ax’ = B. To ensure v/, (x') —y_(x') =
0—A=1.Hence A = —1and B = —x/, and the Green function is
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—x/ for x > x'.

(b) Explicitly calculate the solution y(x) for the case when f(x) = x and check that
this solution satisfies the differential equation and the boundary conditions.

Answer: The solution is given by
1
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It can be seen that

and thus y(0) =0,4'(1) =0, and v’/ (x) = f(x).



(a) Calculate the Fourier series of

flx) = { a— |x| for |x| < a,

0 for |x| > a,
over the range —7r < x < 71, where 0 < a < 7.

Answer: Since f is even
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(b) By considering Parseval’s theorem and a suitable choice of 4, show that
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Answer: Integrating the square of the function gives
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and by Parseval’s theorem this is equal to
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To obtain the given equality, consider a = 2, to give
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Using a half-angle formula (1 — cos2n) = 2sin? n this can be written as




