Math 121A: Homework 6 (due March 13)

- 1. Consider the function $f(x) = x(\pi x)$ defined on $0 \le x \le \pi$.
 - (a) Calculate the Fourier sine series f_s and Fourier cosine series f_c of f.
 - (b) For both f_s and f_c , plot the sum of the first four non-zero terms over the range $-\pi \le x < \pi$ and compare with the exact solution. Which series is more accurate and why?
 - (c) By evaluating $f_s(\frac{\pi}{2})$ and $f_c(\frac{\pi}{2})$, find two expressions for π^3 and π^2 as infinite series of fractions.
 - (d) By using Parseval's theorem find expressions for π^6 and π^4 as infinite series of fractions.
- 2. Boas exercise 7.7.12
- 3. Boas exercise 7.7.13
- 4. Let $f(x) = \sum_{-\infty}^{\infty} c_n e^{inx}$. Suppose that $f'(x) = \sum_{-\infty}^{\infty} d_n e^{inx}$ and $f(x-l) = \sum_{-\infty}^{\infty} q_n e^{inx}$. Express the coefficients d_n and q_n in terms of c_n .
- 5. Let *f* and *g* be periodic functions on the interval $-\pi \le x < \pi$, with complex Fourier series

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}, \qquad g(x) = \sum_{n=-\infty}^{\infty} d_n e^{inx}$$

Let f * g be the *convolution* of f and g, defined as

$$(f*g)(x) = \int_{-\pi}^{\pi} f(y)g(x-y)dy.$$

Calculate the complex Fourier series coefficients of f * g in terms of c_n and d_n .

6. (a) Calculate the Fourier series of the function defined on $-\pi \le x < \pi$ as

$$f(x) = \begin{cases} 1 & \text{for } |x| < \pi/2, \\ 0 & \text{for } |x| \ge \pi/2. \end{cases}$$

- (b) Let $f_{\lambda}(x)$ be a filtered version of f, in which the higher frequency components are damped: if f has Fourier coefficients a_n and b_n , then let f_{λ} have coefficients $\lambda^n a_n$, $\lambda^n b_n$. Plot f, and f_{λ} for the cases of $\lambda = 0.7, 0.8, 0.9$.
- (c) By making use of the result from question 5, find a function $K_{\lambda}(x)$ such that $f_{\lambda} = K_{\lambda} * f$ for any function *f*. Plot K_{λ} for $\lambda = 0.7, 0.8, 0.9$.