
A space-filling curve

In mathematics classes where the natural numbers are studied, several surprising results
can be shown about the relative “sizes” of infinite sets, such as the fact the there is a one-
to-one mapping between the natural numbers N and the even numbers, showing that
they are both countably infinite, with the “same size”. Similar logic also shows that there
is a mapping from the natural numbers N onto the product space N × N of all pairs of
natural numbers.

When dealing with real numbers, it should therefore be somewhat expected that there
is a mapping from the unit interval [0, 1] onto the unit square [0, 1]2. However, what is
surprising is that there continuous mappings of this form. These are frequently referred to
as space-filling curves, or Peano curves, after the Italian mathematician Giuseppe Peano
(1858–1932). Here, a specific space-filling curve due to Schoenberg [1] is described. As
can been seen in the graphs below, this curve has a complex and overlapping structure,
and it is possible to construct curves with a much more regular structure. However, the
curve by Schoenberg has the advantage of being relatively straightforward to analyze.

To begin, a continuous function f : R → [0, 1] is introduced, which is even and is
periodic with period 2, so that f (x) = f (x + 2) for all x. On the interval from [0, 1],

f (x) =


0 if 0 ≤ x < 1/3,
3x − 1 if 1/3 ≤ x < 2/3,
1 if 2/3 ≤ x < 1.

The function is plotted in Fig. 1. Define two sequences of functions according to

xn(t) =
n

∑
k=1

f (32k−2)t)
2k , yn(t) =

n

∑
k=1

f (32k−1t)
2k .

Since each of the xn is a finite sum of terms which are each scalings of f , they are contin-
uous. Consider the kth term of xn(t):∣∣∣∣∣ f (32k−2t)

2k

∣∣∣∣∣ ≤ 2−k.

Since ∑∞
k=1 2−k = 1, the Weierstraß M-test shows that xn(t) converges uniformly to a

function x(t). In addition, it has been shown that a uniformly convergent sequence of
continuous functions has a continuous limit, so x(t) is a continuous function. The same
argument can be applied to show that yn(t) converges to a continuous function y(t).

Now consider the mapping g : [0, 1] → [0, 1]2 specified by g(t) = (x(t), y(t)). To show
that this a mapping onto [0, 1]2, consider any point (x0, y0) ∈ [0, 1]2. In the same way
that any real number can be written as a decimal expansion, the values of x0 and y0 have
binary expansions of the form

x0 =
∞

∑
k=1

ak

2k , y0 =
∞

∑
k=1

bk

2k



where the ak, bk ∈ {0, 1}. A new sequence (ck) can be defined by interleaving these two
sequences according to c2k−1 = ak and c2k = bk for k ∈ N. Consider the value

t0 = 2
∞

∑
k=1

ck

3k .

Then

x(t0) =
∞

∑
k=1

2−k f

(
32k−22

∞

∑
j=1

cj3−j

)

=
∞

∑
k=1

2−k f

(
2

∞

∑
j=1

cj32k−2−j

)

=
∞

∑
k=1

2−k f

(
2

2k−2

∑
j=1

cj32k−2−j + 2c2k−13−1 + 2
∞

∑
j=2k

cj32k−2−j

)
.

Consider the argument of f : the first term is an even integer, and thus by the periodicity
of f , this term plays no role. The third term is positive, and for any N ∈ N with N ≥ 2k,

2
N

∑
j=2k

cj32k−2−j = 2
N

∑
j=0

cj3−2−j

≤ 2
9

N

∑
j=0

3−j

≤ 2
9

1
1 − 1

3

=
1
3

.

Thus if c2k−1 = 0, then second two terms are between 0 and 1/3, and if c2k−1 = 1, then
they are between 2/3 and 1. By using the definition of f , it follows that

f

(
2

2k−2

∑
j=1

cj32k−2−j + 2c2k−13−1 + 2
∞

∑
j=2k

cj32k−2−j

)
= c2k−1

and hence

x(t0) =
∞

∑
k=1

c2k−1

2k =
∞

∑
k=1

ak

2k = x0.

The same approach can be applied to show that y(t0) = y0. Hence g maps onto [0, 1]2. Fig-
ures 2, 3, and 4 show plots of the first five partial sums (xk(t), yk(t)). Even for k = 1, 2 the
curves become complex to follow. However, it can be seen the kth curve passes through
all points in the grid of spacing 2−k. Figure 5 shows the evolution of the individual func-
tions x4(t) and y4(t).
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Figure 1: A graph of the function f (t) on which the space-filling curve is based.
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Figure 2: Graphs of the curves given by (x1(t), y1(t)) and (x2(t), y2(t)). Superimposed
on the two curves are grids with spacing 1/2 and 1/4, showing that the paths pass through
all of these points.
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Figure 3: Graphs of the curves given by (x3(t), y3(t)) and (x4(t), y4(t))
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Figure 4: A graph of the curve (x5(t), y5(t)).
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Figure 5: A graph of the functions x4(t) and y4(t).



References

[1] I. J. Schoenberg, On the Peano curve of Lebesgue, Bull. Amer. Math. Soc. 44 (1938) 519.
doi:10.1090/S0002-9904-1938-06792-4.

http://dx.doi.org/10.1090/S0002-9904-1938-06792-4

