
Math 104: Homework 9 solutions

1. (a) For x ̸= 0,

f ′(x) = x2−1
x2 cos

(
1
x

)
+ 2x sin

(
1
x

)
= cos

(
1
x

)
+ 2x sin

(
1
x

)
where the product rule and chain rule have been employed.

(b) At x = 0,

f ′(0) = lim
x→0

f (x)− f (0)
x − 0

= lim
x→0

x sin
(

1
x

)
= 0,

since | sin x| ≤ 1 for all x ∈ R.

(c) Consider the sequence sn = 1/(2nπ). Then

f ′(sn) = cos(2nπ) +
1

nπ
sin(2nπ) = 1

and hence limn→∞ f ′(sn) = 1. However, sn → 0 but f ′(0) = 0. Hence f ′ is not
continuous at 0.

2. (a) Consider ϵ > 0; since fn is uniformly Cauchy, then there exists an N such that
n, m > N implies

| fn(x)− fm(x)| < ϵ

2
for all x ∈ [a, b], so that

−ϵ

2
< fn(x)− fm(x) <

ϵ

2
.

Taking the limit as x → x0 implies that

−ϵ

2
≤ ln − lm ≤ ϵ

2
.

This result was proved in detail on an earlier homework (Ross Exercise 20.16).
Hence

|ln − lm| ≤
ϵ

2
< ϵ

and ln is a Cauchy sequence. Hence it converges to a limit l.

(b) Choose ϵ > 0. Then since fn converges uniformly to f , there exists an N1 such
that n > N1 implies

| fn(x)− f (x)| < ϵ

3



for all x ∈ [a, b]. Since ln → l, there exists an N2 such that

|ln − l| < ϵ

3
.

Define N = max{N1, N2} + 1, and consider fN. Since limx→x0 fN(x) = lN,
there exists a δ > 0 such that 0 < |x − x0| < δ implies that

| fN(x)− lN| <
ϵ

3
.

Thus for 0 < |x − x0| < δ,

| f (x)− l| ≤ | f (x)− fN(x)|+ | fN(x)− lN|+ |lN − l| < ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

and hence limx→x0 f (x) = l.

3. First suppose that h is differentiable. If h is differentiable, then it is also contin-
uous. Consider the sequence sn = a + λn−1 where λ > 0 is chosen so that the
sn lie within I for all n ∈ N. Then h(sn) = g(sn) and since g is continuous,
limn→∞ g(sn) = g(a). Similarly, consider tn = a − µn−1 where µ > 0 ensures
tn ∈ I for all n ∈ N. Then h(tn) = f (tn), and limn→∞ f (tn) = f (a). Since con-
tinuity implies that limn→∞ h(sn) = limn→∞ h(tn), then f (a) = g(a). Recall from
Theorem 20.10 that limx→a exists if and only if the negative and positive limits are
the same. The positive limit is

h′(a) = lim
x→a+

h(x)− h(a)
x − a

= lim
x→a+

g(x)− g(a)
x − a

= g′(a).

By making use of the fact that f (a) = g(a), the negative limit is

h′(a) = lim
x→a−

h(x)− h(a)
x − a

= lim
x→a−

f (x)− f (a)
x − a

= f ′(a).

Hence f ′(a) = g′(a).

Now suppose the converse, that f (a) = g(a) and f ′(a) = g′(a). Then the positive
limit is

lim
x→a+

h(x)− h(a)
x − a

= lim
x→a+

g(x)− g(a)
x − a

= g′(a)

and the negative limit is

lim
x→a−

h(x)− h(a)
x − a

= lim
x→a−

f (x)− f (a)
x − a

= f ′(a).

Thus, since both the positive and negative limits exist and are equal, then by The-
orem 20.10 the limit as x → a exists and is equal to f ′(a) = g′(a). Hence h is
differentiable at a.



4. First suppose that sn = sn−1 for some n ∈ N. Then f (sn) = sn, and thus sm = sn for
all m ≥ n − 1, so the sequence becomes constant and is therefore convergent.

Now assume that sn ̸= sn−1 for all n ∈ N. Applying the Mean Value Theorem to
the interval from sn to sn−1 shows that there is a value y between sn and sn−1 such
that

f (sn)− f (sn−1)

sn − sn−1
= f ′(y)

Hence
(sn+1 − sn) = (sn − sn−1) f ′(y)

and since | f ′(y)| ≤ a it follows that

|sn+1 − sn| ≤ a|sn − sn−1|.

Applying this result repeatedly gives

|sn+1 − sn| ≤ an|s1 − s0|.

Now, for any m and n where n > m, the triangle inequality gives

|sn − sm| ≤
n−1

∑
k=m

|sk+1 − sk| ≤
n−1

∑
k=m

ak|s1 − s0| <
|s1 − s0|am

1 − a
.

Consider any ϵ > 0: since limk→∞ ak = 0, there exists an N such that k > N implies
that |s1 − s0|am/(1 − a) < ϵ, and hence m, n > N implies that

|sn − sm| < ϵ

so (sn) is a Cauchy sequence, and hence convergent.

5. (a) If f ′′(x) ≥ 0 for x > 0, then f ′(x) is an increasing function for x ≥ 0. Suppose
y > x. Then by the mean value theorem, there exists a c ∈ (0, x) such that

f (x)− f (0)
x − 0

= f ′(c)

and there exists and d ∈ (x, y) such that

f (y)− f (x)
y − x

= f ′(d).

Since d > c, then f ′(d) ≥ f ′(c), and hence

f (x)
x

≤ f (y)− f (x)
y − x



from which it follows that

y f (x)− x f (x) ≤ x f (y)− x f (x)

so
y f (x) ≤ x f (y)

and hence
f (x)

x
=

f (y)
y

.

Since this is true for any x, y where x < y, then f (x)/x is increasing function.
(b) Consider y > x. By following the same steps as above, there exists a c ∈ (0, x)

such that
f (x)− f (0)

x − 0
= f ′(c)

and there exists and d ∈ (x, y) such that

f (y)− f (x)
y − x

= f ′(d)

Since f (x)/x is increasing, then f (x)/x ≤ f (y)/y, and hence

y f (x)− x f (x) ≤ x f (y)− x f (x)

so
f (x)

x
≤ f (y)− f (x)

y − x
.

Therefore f ′(c) ≤ f ′(d). By applying the mean value theorem to f ′, there exists
an e ∈ (c, d) such that

f ′′(e) =
f ′(d)− f ′(c)

d − c
≥ 0.

To show that it is not necessarily the case that f ′′(x) ≥ 0 for all x > 0, consider
the function f (x) = x(1 − e−x). Then f (0) = 0 and

f (x)
x

= 1 − e−x

so f satisfies the conditions described in the exercise. Consider two values x, y
where x < y. Then e−x > e−y, so 1 − e−x < 1 − e−y, and hence f (x)/x <
f (y)/y, so f (x)/x is an increasing function. The first derivative is

f ′(x) = 1 − e−x + xe−x

and the second derivative is

f ′′(x) = e−x + e−x − xe−x = (2 − x)e−x.

Hence f ′′(3) = −e−3 < 0, so it is not the case that f ′′(x) ≥ 0 for all x > 0.
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Figure 1: Graphs for the question on computing limits using L’Hôpital’s rule.



6. Graphs of the four functions in the question are shown in Fig. 1, confirming the
limits for the cases where x → 0.

(a) Let f (x) = e2x − cos x and g(x) = x. Then f ′(x) = 2e2x + sin x and g′(x) = 1.
Then

lim
x→0

f ′(x)
g′(x)

= lim
x→0

2e2x + sin x = lim
x→0

2.

Since this limit exists and both f (x) and g(x) have limit zero as x → 0, L’Hôpital’s
rule can be applied, and thus

lim
x→0

e2x − cos x
x

= 2.

(b) Let f (x) = 1− cos x and g(x) = x2. To evaluate the limit f (x)/g(x), L’Hôpital’s
rule should be applied twice. Taking first derivatives gives f ′(x) = sin x and
g′(x) = 2x, both of which have limit zero as x → 0. Taking second derivatives
gives f ′′(x) = cos(x) and g′′(x) = 2, and thus

lim
x→0

f ′′(x)
g′′(x)

=
1
2

.

Hence

lim
x→0

1 − cos x
x2 = lim

x→0

f ′(x)
g′(x)

= lim
x→0

f ′′(x)
g′′(x)

=
1
2

.

(c) L’Hôpital’s rule can be applied several times to show that

lim
x→∞

x3

e2x = lim
x→∞

3x2

2e2x

= lim
x→∞

6x
4e2x

= lim
x→∞

6
8e2x

= lim
x→∞

3
4

e−2x = 0.

(d) Let f (x) =
√

1 + x −
√

1 − x and g(x) = x. Both f and g have limit zero as
x → 0. The first derivatives are

f ′(x) =
1

2
√

1 + x
+

1
2
√

1 − x

and g(x) = 1. Hence

lim
x→0

√
1 + x −

√
1 − x

x
= lim

x→0

f ′(x)
g′(x)

=
1
2 +

1
2

1
= 1.



7. (a) The definition of derivative is

f ′(a) = lim
x→a

f (x)− f (a)
x − a

and thus by writing h = x − a, this can be rewritten as

f ′(a) = lim
h→0

f (a + h)− f (a)
h

.

If h is negated, then

f ′(a) = lim
−h→0

f (a − h)− f (a)
−h

= lim
h→0

f (a)− f (a − h)
h

.

Now consider L1; this can be rewritten as

lim
h→0

L1(a, h) = lim
h→0

f (a + h)− f (a − h)
2h

= lim
h→0

(
f (a + h)− f (a)

2h
+

f (a)− f (a − h)
2h

)

and since both of the terms have a well-defined limit and limits are additive,

lim
h→0

L1(a, h) =
f ′(a)

2
+

f ′(a)
2

= f ′(a).

Since L2 can be written as

L2(a, h) =
8L1(a, h)

6
− L1(a, 2h)

3

it follows that

lim
h→0

L2(a, h) =
8 f ′(a)

6
− f ′(a)

3
= f ′(a).

(b) If f (x) = x5, then f ′(a) = 5a4. Since

2hL1(a, h) = (a + h)5 − (a − h)5 = 10a4h + 20a2h3 + 2h5

then
|L1(a, h)− f ′(a)| = |10a2h2 + h5|.

Thus, as h → 0, L1(a, h) converges quadratically to f ′(a). Now consider L2(a, h);
by making use of the above result, note that

8(a + h)5 − 8(a − h)5 = 80a4h + 160a2h3 + 16h5



and
−(a + 2h)5 + (a − 2h)5 = −20a4h − 160a2h3 − 64h5.

Thus

12hL2(a, h) = −(a + 2h)5 + 8(a + h)5 − 8(a − h)5 + (a − 2h)5

= 80a4h + 160a2h3 + 16h5 − 20a4h − 160a2h3 − 64h5

= 60a4h − 48h5

so
|L2(a, h)− f ′(a)| = |4h5|.

Hence, as h → 0, L2(a, h) converges quartically to f ′(a). The formulae L1 and
L2 for evaluating derivatives are important in computational approaches to
simulating partial differential equations. The standard definition of the deriva-
tive is “first-order accurate” meaning that as h → 0, the error between the com-
puted derivative and the actual derivative scales like |h|. However, the formu-
lae above, which are referred to as centered differences, have errors which scale
according to |h|2 and |h4|, and are referred to as second-order and fourth-order
accurate respectively.

8. (a) Since | cos x| ≤ 1 and | sin x| ≤ 1 for all x ∈ R, it follows that | cos x sin x| ≤ 1
for all x ∈ R, and hence

f (x) ≥ x − 1.

Since limx→∞ x = ∞, it follows that limx→∞ f (x) = ∞. To find the limit of g(x),
note that esin x ∈ [e−1, e], and thus g(x) ≥ f (x)e−1, so limx→∞ g(x) = ∞.

(b) The derivative of f is

f ′(x) = 1 + cos x2 − sin2 x = 2 cos2 x.

The function g can be written as g(x) = esin x f (x), and hence

g′(x) = esin x cos x f (x) + esin x f ′(x) = esin x cos x(2 cos x + f (x)).

(c) If x > 3,
f (x) + 2 cos x ≥ x − 1 + 2 cos x ≥ x − 3 > 0.

Hence if x > 3 and cos(x) ̸= 0, then g′(x) ̸= 0, so

f ′(x)
g′(x)

=
2 cos2 x

esin x cos x(2 cos x + f (x))
=

2e− sin x cos x
2 cos x + f (x)

.

(d) For x > 3, ∣∣∣∣ 2e− sin x cos x
2 cos x + f (x)

∣∣∣∣ ≤ ∣∣∣∣ 2e
x − 3

∣∣∣∣



and since limx→∞
1

|x−3| = 0 it follows that

lim
x→∞

2e− sin x cos x
2 cos x + f (x)

= 0.

However, for x > 1,

f (x)
g(x)

=
x + cos x sin x

esin x(x + cos x sin x)
= e− sin x.

For all n ∈ N, e− sin x = e−1 if x = 2nπ + π/2 and e− sin x = e if x = 2nπ + 3π/2.
Hence limx→∞

f
g does not exist.


