
Math 104: Homework 8 solutions

1. (a) Figure 1(a) shows graphs of f (x) compared to f (x/2), f (x/3), and f (x/4). The
graphs have the same shape, but are stretched in the x direction. In general, for
any function g(x), the graph of y = g(λx) will be stretched by a factor of λ−1

in the x direction.

(b) Figure 1(b) shows graphs of f (x) compared to 2 f (x), f (x + 1/2), and f (x)− 1
2 .

The all correspond to different shifts and scalings of f . The function 2 f (x) is
scaled by a factor of 2 in the y direction. The function f (x + 1/2) is shifted by
−1/2 in the x direction, and the function f (x)− 1/2 is shifted by a −1/2 in the y
direction.

(c) The function | f (x) − 1/2| is shown in Fig. 2(a). This can be graphically inter-
preted as reflecting the parts of f (x)− 1/2 below the y axis to above it.

(d) Figure 2(b) shows graphs of f (x2) and f (x)2, both of which can be interpreted
as nonlinear scalings. The graph of f (x2) is the same as f (x), but with a scaling
applied to the x axis. The graph of f (x)2 scales each value of f (x) in the y
direction. The two functions agree over the domain [0, 1].

2. (a) From the definition,

f1(x) =
x2

1 + x2 .

As x → ∞, it becomes much larger than 1, and thus the x2 terms dominate
and f1(x) → 1. Close to zero, when x2 is small f1(x) ≈ x2, looking locally like
a quadratic. The function f1(x) is plotted in Fig. 3, where these features are
visible.

(b) It can be seen that

fn(x) =
nx2

1 + nx2 =
(
√

nx)2

1 + (
√

nx)2 = f1(
√

nx)

Thus the graphs of fn have the same shape as f1, but are scaled by a factor of
1/

√
n in the x direction.

(c) The limit function f and strip of width 1/4 are shown in Fig. 3. It can be seen
that as n increases, more of the curve fn lies within the strip. However, since
fn(0) = 0, the curves must eventually exit the strip, and there will always be
some part outside. Hence fn does not converge uniformly.

3. (a) The functions f0, f1, and f2 are plotted in Fig. 4. Since the values of f0 oscillate
from −1 to 1 infinitely often in the region close to 0, then f0 is not continuous
here. However f1 and f2 are continous. f0 and f1 are not differentiable at 0, but
the oscilliations in f2 become small enough near 0 that it is differentiable there.
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Figure 1: Graphs for the first half of question 1, showing various scalings and translations
of f (x).
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Figure 2: Graphs for the second half of question 1, showing the effect of an absolute value,
and performing a nonlinear scaling.



0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

y

x

y = f1(x)
y = f4(x)
y = f9(x)

y = f16(x)
y = f64(x)

y = f (x)
|y − f (x)| = 1/4

Figure 3: Graph for question 2, showing a sequence of functions with a pointwise but not
uniform limit.
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Figure 4: Graph for question 3, showing a sequence of functions with different continuity
and differentiability properties at x = 0.
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Figure 5: Graphs for question 4, showing a recursively defined sequence of functions.

(b) Since | sin(x)| ≤ 1 for all x, the functions fn can be bounded within the regions
|y| ≤ |x|n, shown by the dashed lines in Fig. 4. By looking at the graph, it
can be seen that over the interval [−1/2, 1/2], these regions become smaller and
smaller. For any ϵ > 0, there exists an N ∈ N such that (1/2)n < ϵ for n > N,
so that fn will lie wholly within the strip |x − 0| < ϵ. Hence fn will converge
uniformly to f (x) = 0.

4. (a) Graphs of g0, g1, g2, and g3 are shown in Fig. 5.

(b) Firstly, note that g0 is an even function, and since gn is even if gn+1 is even, then
by induction gn is even for all n ∈ N.
By looking at curves in Fig. 6, it appears that each successive gn becomes closer
to zero. Define the hypothesis Pn to be that 0 ≤ gn(x) ≤ 21−n for x ∈ [0, 2].
Since g0 = |x|, it is clear that P0 is true. Now assume Pn is true and consider
Pn+1. Then

−2−n ≤ gn(x)− 2−n ≤ 21−n − 2−n

so
−2−n ≤ gn(x)− 2−n ≤ 2−n

and hence |gn(x)− 2−n| ≤ 2−n. Therefore 0 ≤ gn+1(x) ≤ 2−n and Pn+1 is true.
By induction, Pn is true for all n ∈ N ∪ {0}.



Now consider when x > 2. By looking at Fig. 6, it appears as though the curves
are straight lines with slope 1 in this region. Define the hypothesis Sn to be that
gn(x) = x − 2 + 21−n. The case for S0 is true. Now assume Sn is true and
consider Sn+1. Then

gn+1(x) = |gn(x)− 2−n|
= |x − 2 + 21−n − 2−n|
= |x − 2 + 2−n|
= x − 2 + 2−n

where on the final line, the absolute value sign is dropped since it is known
the expression will be positive for x > 2. Hence Sn+1 is true. By mathematical
induction, Sn is true for all n ∈ N ∪ {0}.
Based on these results, it appears that gn converges uniformly to g defined as

g(x) =
{

|x| − 2 for |x| > 2,
0 for |x| ≤ 2.

To show this, consider ϵ > 0. Then since 21−n converges to 0, there exists an
N ∈ N such that n > N implies |21−n| < ϵ. For 0 ≤ x ≤ 2, and n ≥ N

|gn(x)− g(x)| = |gn(x)| ≤ 21−n < ϵ.

For x > 2,

|gn(x)− g(x)| = |x − 2 + 21−n − (x − 2)| = 21−n < ϵ.

Since the functions are even, it follows that |gn(x)− g(x)| < ϵ for all x ∈ R.
Hence gn → g uniformly.

5. This question involves looking at two special cases of the fourth midterm question.

(a) Figure 6(a) shows a plot of the several of the fn for the case of f (x) = 1 − x. To
prove that these functions do not converge uniformly to f , it must be shown
that there exists some ϵ > 0 such that for all N, there exists an integer n > N
and x ∈ (0, 1) such that | f (x)− fn(x)| ≥ ϵ.
Consider ϵ = 1/2. For any N, choose an integer n > N, and then consider
x = 1/2n. Hence

f (x)− fn(x) = (1 − x)− 0 = 1 − 1
2n

>
1
2

,

and thus fn does not converge to f uniformly.
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Figure 6: Graphs for question 5 on uniform continuity shown for the case of (a) f (x) =
1 − x, and (b) f (x) = x − x2.
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Figure 7: Graphs for question 6, showing a recursively defined sequence of functions.

(b) Figure 6(b) shows a plot of several fn for the case of f (x) = x − x2. Note that

fn(x)− f (x) =
{

x − x2 if x < 1/n,
0 if x ≥ 1/n.

For x ∈ (0, 1), the function can be bounded according to 0 < x− x2 < x. Hence,
by considering the above equation, for any x ∈ (0, 1), | fn(x) − f (x)| < 1/n.
Consider any ϵ > 0. There exists an N such that n > N implies 1/n < ϵ, and
thus | fn(x)− f (x)| < ϵ for all x ∈ (0, 1). Hence fn converges uniformly to f .

6. Despite having a superficial similarity to question 4, the functions in this question
have a much more complicated limit. Figure 6 shows plots of several of the hn,
suggesting that the limit is a continuous, fractal curve. The curve appears to be
related to the Cantor set, discussed in Example 5 of Ross chapter 13.



To begin, consider proving that the sequence of curves is uniformly Cauchy. Note
that all of the hn are positive, so |hn(x)| = hn(x). By applying the triangle inequality

hn+1(x) = |hn(x)− 3−(n+1)| ≤ |hn(x)|+ |3−(n+1)| = hn(x) + 3−(n+1)

and thus
hn+1(x)− hn(x) ≤ 3−(n+1). (1)

By the reverse triangle inequality (Ross exercise 3.5(b)),

hn+1(x) = |hn(x)− 3−(n+1)|
≥

∣∣∣|hn(x)| − |3−(n+1)|
∣∣∣

= |hn(x)− 3−(n+1)|
≥ hn(x)− 3−(n+1)

and thus
hn+1(x)− hn(x) ≥ −3−(n+1). (2)

Combining Eqs. 1 and 2 gives

|hn+1(x)− hn(x)| ≤ 3−(n+1).

Now consider any integer m > n. By applying the triangle inequality multiple
times, and using the above equation,

|hm(x)− hn(x)| ≤
m

∑
k=n+1

3−k = 3−(n+1)
m−n−1

∑
k=0

3−k < 3−(n+1)
∞

∑
k=0

3−k =
3−n

2
.

Thus, since limn→∞ 3−n = 0, it follows that for any ϵ > 0, there exists an N such
that m > n ≥ N implies that |hm(x) − hn(x)| < ϵ. Hence the sequence of func-
tions is uniformly Cauchy and thus uniformly convergent. Since each of the hn is
continuous, it follows that the limit h is continuous.

To prove the differentiability properties, several intermediate results are first con-
sidered. From the graph, it appears that h(x) vanishes if x is in the Cantor set. To
prove this, consider an x ∈ [0, 1], and consider writing a trinary expansion of the
form

x =
∞

∑
k=1

ak3−k

where each ak is either 0, 1, or 2. The existence of such expansions is discussed in
Ross chapter 16, although here, due to the properties of the function being consid-
ered, base 3 is used instead of the usual base 10. Since

1
2
=

∞

∑
k=1

3−k



it follows that

h0(x) =

∣∣∣∣∣ ∞

∑
k=1

(ak − 1)3−k

∣∣∣∣∣ .

Now suppose that x is in the Cantor set. It can be written in a trinary expansion
where the ak are all either 0 or 2. Note that this expansion is not always unique, since
an expansion that ends in an infinite sequence of the form 0222222 . . . is equivalent
to 1000000 . . ., and an expansion of the form 1222222 . . . is equivalent to 2000000 . . .1.
If a1 = 2, then

h0(x) =
1
3
+

∞

∑
k=2

(ak − 1)3−k

and if a1 = 0 then

h0(x) =
1
3
−

∞

∑
k=2

(ak − 1)3−k,

so in general

h0(x) =
1
3
+ (a1 − 1)

∞

∑
k=2

(ak − 1)3−k.

Hence

h1(x) =

∣∣∣∣h0(x)− 1
3

∣∣∣∣
=

∣∣∣∣∣ ∞

∑
k=2

(ak − 1)3−k

∣∣∣∣∣
=

1
32 + (a1 − 1)

∞

∑
k=3

(ak − 1)3−k.

Mathematical induction can be applied to show that

hn(x) =
1

3n+1 + (an+1 − 1)
∞

∑
k=n+2

(ak − 1)3−k. (3)

Since

|hn(x)| ≤
∞

∑
k=n+1

3−k =
1

3n+1
1

1 − 1/3

it follows that h(x) = limn→∞ hn(x) = 0.

Now consider a trinary expansion that contains at least one 1, and let the first oc-
curence be at the jth position. If j = 1, then x ∈ [1/3, 2/3], and hence h0(x) =
|x − 1/2| ∈ [0, 1/6]. Thus

h1(x) =
∣∣∣∣h0(x)− 1

3

∣∣∣∣ = 1
3
− h0(x) ∈

[
1
6

,
1
3

]
.

1This is the same principle by which 1 and 0.9999 . . . are decimal expansions of the same real number.



Since ∑∞
k=2 3−k = 1/6, the displacements caused by each hn are not enough to switch

the sign of this number. In general for n ≥ 2

hn(x) =
1
3
− h0(x)−

n

∑
k=2

3−k

and hence

h(x) =
1
6
− h0(x) =

1
6
−

∣∣∣∣x − 1
2

∣∣∣∣ .

This agrees with the shape of the functions in Fig. 7. Now suppose that the first
1 in the trinary expansion occurs at some position j > 1. By following the above
argument to obtain Eq. 3,

hj−2(x) =
1

3j−1 + (aj−1 − 1)
∞

∑
k=j

(ak − 1)3−k

and hence

hj−1(x) =

∣∣∣∣∣ ∞

∑
k=j

(ak − 1)3−k

∣∣∣∣∣ =
∣∣∣∣∣ ∞

∑
k=j+1

(ak − 1)3−k

∣∣∣∣∣ (4)

which can be rewritten as hj−1(x) = |y| where

y = x − 1
2
−

j−1

∑
k=1

(ak − 1)3−k. (5)

It can be seen that

|y| ∈
[

0,
1

2 · 3j+1

]
and thus

hj(x) =
1
3j − |y|.

Following similar steps as the case for j = 1, it can be seen that

h(x) =
1

2 · 3j − |y|. (6)

With an explicit representation of the function for all values in [0, 1], it is now pos-
sible to compute the differentiability properties of h. To begin, suppose that x is in
the Cantor set, and write

x =
∞

∑
k=1

ak3−k

where the ak are either 0 or 2. Then define the sequence (sn) according to sn =
x + 2(1 − an)3−n – this sequence converges to x. It can be verified that sn flips the



nth digit in the trinary expansion from a 0 to 2 or vice versa. This is in the Cantor
set so h(sn) = 0, and hence

lim
n→∞

h(x)− h(sn)

x − sn
= 0.

Now consider the sequence tn defined as

tn =
n

∑
k=1

ak3−k +
∞

∑
k=n+1

3−k.

This corresponds to taking the first n positions to the trinary expansion, followed
by an infinite sequence of 1’s. By reference to Eq. 4 it can be seen that

hn(tn) =

∣∣∣∣∣ ∞

∑
k=j+2

(ak − 1)3−k

∣∣∣∣∣ = 0.

Hence hn+1(tn) = 3−(n+1), and h(tn) =
1
23−(n+1). Note that

|x − tn| =
∞

∑
k=n+1

(ak − 1)3−k ≤ 3−n

2

and hence ∣∣∣∣h(x)− h(tn)

x − tn

∣∣∣∣ ≥ 1
3

.

If all terms of this form are at least 1/3 in magnitude, they cannot converge to zero.
Hence the limit

lim
y→x

h(x)− h(y)
x − y

is undefined and h is not differentiable at x. Now suppose that x is not in the Cantor
set, with trinary expansion

x =
∞

∑
k=1

ak3−k.

Let j be the smallest value such that aj = 1, and define

u =
j

∑
k=1

ak3−k, v =
j

∑
k=1

ak3−k +
∞

∑
k=j+1

2 · 3−k.

These numbers correspond to replacing all digits in the trinary expansions after the
jth digit with zeros and twos respectively. Since x is not in the Cantor set, x ∈ (u, v).
By reference to Eqs. 5 and 6, the function is

h(x) =
1

2 · 3j −
∣∣∣∣∣x − 1

2
−

j−1

∑
k=1

(ak − 1)3−k

∣∣∣∣∣



in this interval. Thus h(x) is differentiable apart from when

x =
1
2
+

j−1

∑
k=1

(ak − 1)3−k,

which occurs if any only if ak = 1 for all k > j.

This completes the proof. h is not differentiable at any point in the Cantor set, nor
at any point with a trinary expansion that ends in an infinite sequence of 1’s. Other-
wise h is differentiable. Interestingly, while the Cantor set is uncountable, the points
that have trinary expansions ending in an infinite sequence of 1’s are countable.

7. (a) The derivative of h(x) =
√

x is given by

h′(x) = lim
y→x

h(y)− h(x)
y − x

= lim
y→x

√
y −

√
x

(
√

y −
√

x)(
√

y +
√

x)

= lim
y→x

1
√

y +
√

x

=
1
2

x−1/2.

Since the limit exists and is finite for x > 0, h′(x) is differentiable for x > 0.

(b) The derivative of f (x) = x1/3 is given by

f ′(x) = lim
y→x

f (y)− f (x)
y − x

= lim
y→x

y1/3 − x1/3

(y1/3 − x1/3)(y2/3 + x1/3y1/3 + x2/3)

= lim
y→x

1
y2/3 + x1/3y1/3 + x2/3

=
1
3

x−2/3.

Since the limit exists and is finite for x ̸= 0, f ′(x) is differentiable for x ̸= 0.

(c) f is not differentiable at 0, because even though the limit above exists for x = 0,
it is +∞. A function is differentiable if and only if the limit exists and is finite.

8. (a) Consider any ϵ > 0, and let δ =
√

ϵ. Then for |x − 0| < δ,

| f (x)− f (0)| = | f (x)| ≤ |x|2 < ϵ

and thus f is continuous at x = 0.



(b) Consider x ̸= 0. If x ∈ Q, then consider the sequence sn = x +
√

2/n, so
that sn → x. Since all sn are irrational, f (sn) = 0, so f (sn) → 0. However
f (x) = x2 ̸= 0, so f is not continuous at x.
If x /∈ Q, then define a sequence sn so that sn ∈ (x − n−1, x + n−1) and sn ∈ Q.
By the “Denseness of Q”, such a choice is always possible. Observe that sn → x.
However f (sn) = s2

n, so f (sn) → x2, but f (x) = 0 ̸= x2. Hence f is not
continuous at x.

(c) Since ∣∣∣∣ f (x)− f (0)
x − 0

∣∣∣∣ ≤ ∣∣∣∣x2

x

∣∣∣∣ ≤ |x|

then it follows that

lim
x→0

f (x)− f (0)
x − 0

= 0

and thus f is differentiable at x = 0.


