Math 104: Homework 7 solutions

1.

(a)

(b)

(a)

The derivative of f(x) = y/x is

fo =57

which is unbounded as x — 0. Since f(x) is continuous on [0, 1], it is uniformly
continous on this interval by Theorem 19.2. Hence for all € > 0, there exists
0 > 0 such that for all x,y € [0,1] and |x —y| < 4, then |f(x) — f(y)| < e.
Since this property is still satisfied if x and y are chosen from (0, 1], then f(x)
is uniformly continuous on (0, 1] also.

Choose a € > 0, and consider x,y € [1,00). Then
f(x) = fy)] = [Vx—yl
= Jvi- i
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where the final line makes use of the inequality \/E > 1 for x > 1. Hence for
|x — y| < 6 where § = 2¢, then

f(x) = fy)l <e

and thus f is uniformly continuous on [1, c0).

Choose € > 0. Then since g is uniformly continuous, there exists a § > 0, such
that foralla,b € R with |[a — b| < 4,

8(a) —g(b)| <e.
Similarly, since f is uniformly continuous, there exists « such that for all x,y €

S with |[x —y| <k,
f(x) = f(y)l < 4.
Hence, by equating a = f(x) and b = g(y), it can be seen that for all |x — y| < «,

where x,y € S,
g(f(x)) —g(f(y))] <e

and thus g o f is uniformly continuous.



(b) Choose € > 0. Then there exists 4; > 0 such that forall x,y € S where |[x —y| <

41, then
€

) = f)l < 5

and there exists d, > 0 such that for all x,y € S where |x — y| < J, then

€
8(x) —gW)l < 5.
Now consider any x,y € S satisfying |x — y| < §, where 6 = min{éy,,}. Then

((f+8)(x) = (f+W = [(f(x) = f(¥) = ((x) = 8(¥))l

< f(x) = fy)l+18(x) —g(v)]
€ €

Hence f + g is uniformly continuous on S.

(c) Consider f(x) = x on R. Then for any € > 0, it can be seen that for any
x,y € R satisfying |x — y| < § where § = ¢, then |f(x) — f(y)| < €. Hence f is
uniformly continuous on RR.

Now consider f(x) = x and g(x) = x. Then the multiplication is h(x) =
f(x) - g(x) = x2. To show that } is not continuous, pick € = 1, and consider
any 6 >0.Ifx=6"'+$andy = 671, then |x —y| = § but

2
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|h<x>—h<y>|=|(§+§) =142

Hence there does not exist a § > 0 such that for all |x — y| < J, |h(x) —h(y)| <
1, so h is not continous on R.
3. (a) Figure[l]shows a graph of the function f(x) = (x — 1)~ (x —2) "2

(b) Consider a sequence (a,) with terms in (2, 3) which converges to 2. Then any
term can be written at 2 + A for some A € (0,1), and

11
(1+A)AZ ~ 222

f2+A) =

Consider any M > 0. Then there exists an N € IN such thata, <2+41/v2M
for allm > N. Then f(a,) > M for all n > N, and thus lim,_,,+ f(x) = oo.
Similar arguments show that

lim f(x) = oo

x—2~

li =

Jim f:) = oo

lim f(x) = —oo

x—1-
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Figure 1: A graph of the function f(x) = (x — 1)~ !(x —2)~2.

By Theorem 20.10, a limit at a point is well defined if and only if the positive
and negative limits are equal. Hence lim,_,; f(x) = oo, and lim,_,; f(x) is
undefined.

Suppose that f1(x) < fo(x) for all x € (a,b), but Ly > Lp. Then L; = Ly + A
for some A > 0. Now consider the sequence ¢, = a + (b —a)/(2n) which
converges to a. Since lim,_,,+ f1(x) = L;, there exists an Nj such that n > N;
implies

A

filen) = Lil < 5

and hence fi(c,) — L1 > —A/2, so that fi(c,) > L; — A/2. Similarly there
exists an N such that n > N, implies

falew) — Lo| < 2

2

and hence f>(c,) — Lp < A/2,so that fr(cy) < L, +A/2. Busince A = L1 — Ly,
then Ly — A/2 = Ly, + A/2,and hence fi(c,) < fa(cn) which is a contradiction.
Hence L1 < L.



7.

(b) Consider fi(x) = 0, and fo(x) = x. Then for all x € (0,1), fi(x) < fa(x).
However lim,_,g+ f1(x) = 0 and lim,_,o+ f2(x) = 0,s0 L1 = Lp.

(@) At x = 1, the series becomes )_a,. In order for this series to converge, then
lima, = 0. However, if the sequence (a,) has infinitely many non-zero inte-
gers, then there does not exist an N such that n > N implies |a, — 0| < 1/2.
Hence the series does not converge at x = 1, so the radius of convergence must
be less than or equal to 1.

(b) Suppose that limsup |a,| = a > 0. Then there exist infinitely many terms a,,,
such that |a,, | > a/2. Now consider the sequence with terms |a,|'/". This has
a subsequence |a,, |, which satisfies

1 a 1/nk
o> (3)

and as 1y — oo, |a,, |'/"™ — 1. Hence, lim sup |a,|'/" > 1.

(a) For a fixed value of x € [0, 00),

. X .
Iim — =x-lim — =0.
n—oo 1 n—oo 1

and hence the sequence of functions converges pointwise to f(x) = 0.
(b) Choose € > 0. Thenlet N = ¢~ 1. If n > N, then for all x € [0,1],

[fu(x) — f(x)| = ‘%‘ < % <e.

and hence f, — f uniformly on [0, 1].

(c) Pick e = 1. To prove that f,, does not tend to f uniformly on [0, o), it must be
shown that there does not exist an N such that n > N implies |f,(x) — f(x)] <
1 for all x € [0, 0). However, for any n, if x = n, then

o) = f) = | —0] =1

Hence for all n there exists an x such that |f,(x) — f(x)| > 1, so f, does not
converge uniformly to f.

(@) Forx =0,
. .0
P fa0) = i 7 =0
For a fixed value of x € (0, ),
. . nx . X X 1
M) = i e TR T e T e T



y=filx) ——
35 | y=falx) —— |
y = fo(x)
3+ y = flox) ——
y = faolx) ——
25 | y = fs0(x) -
y=f(x) —
=N 2+ i
1.5 - .
1+ |
05 ¢
0 I I I
0 0.5 1.5 2
X

Figure 2: Graphs of the function f,(x) = nx/(1+ nx?) for several values of 1, as well as

its pointwise limit f(x) = x~2.

Hence on the interval [0, c0), f, converges pointwise to

0 ifx =0,
f(x):{l if x > 0.

X

(b) To show that f, does not converge to f uniformly on [0, 1], consider x = % for

fu:

n_

1 n
)~ £ = | -t

The fraction n/(n + 1) is smaller than 1 for all n € IN. Hence for n > 2, and
x=1/n,
[fu(x) = f(x)] > 1.

Hence there does not exist an N € IN such that n > N implies | f,(x) — f(x)]| <
1 forall x € [0,1].

(c) Forx € [1,00),

()= £ = |

nx _1
1+nx2 «x

1
N ’(1+nx2)x <




Thus for any € > 0, if N = e}, then n > N implies that | f,(x) — f(x)| < € for
all x € [1,00), and hence f, — f uniformly on this interval.

8. Suppose that f(I) is open for any open interval I, but that f is not monotonic. Then
there would exist some interval [a, b] over which it is non-monotonic.

Suppose f(a) = f(b). Then if it is non-monotonic, it is non-constant so there exists
an x € (a,b) such that f(x) # f(a). Consider f([a,b]): by Corollary 18.3, the set
must be an interval, and by Theorem 18.1 it must be bounded and attain its bounds,
thus being some closed interval [c,d]. If f(x) > f(a), thend > f(a), in which case
f((a,b)) must still contain d, and thus this set is not open since d is non an interior
point. If f(x) < f(b), then ¢ < f(a), in which case f((a,b) must still contain ¢, and
thus this set is not open. Either possibility leads to a contradiction.

Now suppose that f(a) < f(b). Then, by the argument above, f([a,b]) must be a
closed interval [c,d]. If d > f(b), then d is still in f((a,b)), and thus this set is not
open. Hence, since d > f(b), then the only remaining possibility is d = f(b), and
hence f(x) < f(b) for all x € [a,b]. Similarly, it can be shown that ¢ = f(a), and
hence f(a) < f(x) forall x € [a,]].

Now consider the interval [a, x]. If f(a) = f(x), this leads to a contradiction fol-
lowing the same argument above. Hence f(a) < f(x), and thus, by applying the
argument above, f(y) < f(x) forally € [a,]].

Since x and y are chosen arbitrarily, it has been shown that for all x,y € [a,b] where
x <y, then f(x) < f(y), showing that the function non-decreasing, and hence
monotonic. If f(a) > f(b), the above arguments can be applied to —f, to show
that f is non-increasing, and hence monotonic also. Either possibility violates the
original assumption the f is non-monotonic.

All possibilities lead to a contradiction, so the original assumption must be false.
Hence if f(I) is open for any open interval I, then f is monotonic.



