
Math 104: Homework 7 solutions

1. (a) The derivative of f (x) =
√

x is

f ′(x) =
1

2
√

x

which is unbounded as x → 0. Since f (x) is continuous on [0, 1], it is uniformly
continous on this interval by Theorem 19.2. Hence for all ϵ > 0, there exists
δ > 0 such that for all x, y ∈ [0, 1] and |x − y| < δ, then | f (x) − f (y)| < ϵ.
Since this property is still satisfied if x and y are chosen from (0, 1], then f (x)
is uniformly continuous on (0, 1] also.

(b) Choose a ϵ > 0, and consider x, y ∈ [1, ∞). Then

| f (x)− f (y)| = |
√

x −√
y|

=

∣∣∣∣∣(√x −√
y)

√
x +

√
y

√
x +

√
y

∣∣∣∣∣
=

|x − y|
|
√

x +
√

y|

≤ |x − y|
2

where the final line makes use of the inequality
√

x ≥ 1 for x ≥ 1. Hence for
|x − y| < δ where δ = 2ϵ, then

| f (x)− f (y)| < ϵ

and thus f is uniformly continuous on [1, ∞).

2. (a) Choose ϵ > 0. Then since g is uniformly continuous, there exists a δ > 0, such
that for all a, b ∈ R with |a − b| < δ,

|g(a)− g(b)| < ϵ.

Similarly, since f is uniformly continuous, there exists κ such that for all x, y ∈
S with |x − y| < κ,

| f (x)− f (y)| < δ.

Hence, by equating a = f (x) and b = g(y), it can be seen that for all |x− y| < κ,
where x, y ∈ S,

|g( f (x))− g( f (y))| < ϵ

and thus g ◦ f is uniformly continuous.



(b) Choose ϵ > 0. Then there exists δ1 > 0 such that for all x, y ∈ S where |x − y| <
δ1, then

| f (x)− f (y)| < ϵ

2
and there exists δ2 > 0 such that for all x, y ∈ S where |x − y| < δ2, then

|g(x)− g(y)| < ϵ

2
.

Now consider any x, y ∈ S satisfying |x − y| < δ, where δ = min{δ1, δ2}. Then

|( f + g)(x)− ( f + g)(y)| = |( f (x)− f (y))− (g(x)− g(y))|
≤ | f (x)− f (y)|+ |g(x)− g(y)|
<

ϵ

2
+

ϵ

2
= ϵ.

Hence f + g is uniformly continuous on S.

(c) Consider f (x) = x on R. Then for any ϵ > 0, it can be seen that for any
x, y ∈ R satisfying |x − y| < δ where δ = ϵ, then | f (x)− f (y)| < ϵ. Hence f is
uniformly continuous on R.
Now consider f (x) = x and g(x) = x. Then the multiplication is h(x) =
f (x) · g(x) = x2. To show that h is not continuous, pick ϵ = 1, and consider
any δ > 0. If x = δ−1 + δ

2 and y = δ−1, then |x − y| = δ
2 but

|h(x)− h(y)| =
∣∣∣∣∣
(

1
δ
+

δ

2

)2

− 1
δ2

∣∣∣∣∣ = 1 +
δ2

4
> 1

Hence there does not exist a δ > 0 such that for all |x − y| < δ, |h(x)− h(y)| <
1, so h is not continous on R.

3. (a) Figure 1 shows a graph of the function f (x) = (x − 1)−1(x − 2)−2.

(b) Consider a sequence (an) with terms in (2, 3) which converges to 2. Then any
term can be written at 2 + λ for some λ ∈ (0, 1), and

f (2 + λ) =
1

((1 + λ)λ2 >
1

2λ2

Consider any M > 0. Then there exists an N ∈ N such that an < 2 + 1/
√

2M
for all n > N. Then f (an) > M for all n > N, and thus limx→2+ f (x) = ∞.
Similar arguments show that

lim
x→2−

f (x) = ∞

lim
x→1+

f (x) = ∞

lim
x→1−

f (x) = −∞
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Figure 1: A graph of the function f (x) = (x − 1)−1(x − 2)−2.

(c) By Theorem 20.10, a limit at a point is well defined if and only if the positive
and negative limits are equal. Hence limx→2 f (x) = ∞, and limx→1 f (x) is
undefined.

4. (a) Suppose that f1(x) ≤ f2(x) for all x ∈ (a, b), but L1 > L2. Then L1 = L2 + ∆
for some ∆ > 0. Now consider the sequence cn = a + (b − a)/(2n) which
converges to a. Since limx→a+ f1(x) = L1, there exists an N1 such that n > N1
implies

| f1(cn)− L1| <
∆
2

and hence f1(cn) − L1 > −∆/2, so that f1(cn) > L1 − ∆/2. Similarly there
exists an N2 such that n > N2 implies

| f2(cn)− L2| <
∆
2

and hence f2(cn)− L2 < ∆/2, so that f2(cn) < L2 + ∆/2. Bu since ∆ = L1 − L2,
then L1 − ∆/2 = L2 + ∆/2, and hence f1(cn) < f2(cn) which is a contradiction.
Hence L1 ≤ L2.



(b) Consider f1(x) = 0, and f2(x) = x. Then for all x ∈ (0, 1), f1(x) < f2(x).
However limx→0+ f1(x) = 0 and limx→0+ f2(x) = 0, so L1 = L2.

5. (a) At x = 1, the series becomes ∑ an. In order for this series to converge, then
lim an = 0. However, if the sequence (an) has infinitely many non-zero inte-
gers, then there does not exist an N such that n > N implies |an − 0| < 1/2.
Hence the series does not converge at x = 1, so the radius of convergence must
be less than or equal to 1.

(b) Suppose that lim sup |an| = a > 0. Then there exist infinitely many terms ank

such that |ank | > a/2. Now consider the sequence with terms |an|1/n. This has
a subsequence |ank |, which satisfies

|ank |
1/nk >

( a
2

)1/nk

and as nk → ∞, |ank |1/nk → 1. Hence, lim sup |an|1/n ≥ 1.

6. (a) For a fixed value of x ∈ [0, ∞),

lim
n→∞

x
n
= x · lim

n→∞

1
n
= 0.

and hence the sequence of functions converges pointwise to f (x) = 0.

(b) Choose ϵ > 0. Then let N = ϵ−1. If n > N, then for all x ∈ [0, 1],

| fn(x)− f (x)| =
∣∣∣ x
n

∣∣∣ ≤ 1
n
< ϵ.

and hence fn → f uniformly on [0, 1].

(c) Pick ϵ = 1. To prove that fn does not tend to f uniformly on [0, ∞), it must be
shown that there does not exist an N such that n > N implies | fn(x)− f (x)| <
1 for all x ∈ [0, ∞). However, for any n, if x = n, then

| fn(x)− f (x)| =
∣∣∣n
n
− 0

∣∣∣ = 1.

Hence for all n there exists an x such that | fn(x) − f (x)| ≥ 1, so fn does not
converge uniformly to f .

7. (a) For x = 0,

lim
n→∞

fn(x) = lim
n→∞

0
1
= 0.

For a fixed value of x ∈ (0, ∞),

lim
n→∞

fn(x) = lim
n→∞

nx
1 + nx2 = lim

n→∞

x
1
n + x2

=
x
x2 =

1
x

.
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Figure 2: Graphs of the function fn(x) = nx/(1 + nx2) for several values of n, as well as
its pointwise limit f (x) = x−2.

Hence on the interval [0, ∞), fn converges pointwise to

f (x) =
{

0 if x = 0,
1
x if x > 0.

(b) To show that fn does not converge to f uniformly on [0, 1], consider x = 1
n for

fn:

| fn(x)− f (x)| =
∣∣∣∣∣ 1
1 + 1

n
− n

∣∣∣∣∣ =
∣∣∣∣n − n

n + 1

∣∣∣∣
The fraction n/(n + 1) is smaller than 1 for all n ∈ N. Hence for n ≥ 2, and
x = 1/n,

| fn(x)− f (x)| > 1.
Hence there does not exist an N ∈ N such that n > N implies | fn(x)− f (x)| <
1 for all x ∈ [0, 1].

(c) For x ∈ [1, ∞),

| fn(x)− f (x)| =
∣∣∣∣ nx
1 + nx2 − 1

x

∣∣∣∣ = ∣∣∣∣ 1
(1 + nx2)x

∣∣∣∣ < 1
n

.



Thus for any ϵ > 0, if N = ϵ−1, then n > N implies that | fn(x)− f (x)| < ϵ for
all x ∈ [1, ∞), and hence fn → f uniformly on this interval.

8. Suppose that f (I) is open for any open interval I, but that f is not monotonic. Then
there would exist some interval [a, b] over which it is non-monotonic.

Suppose f (a) = f (b). Then if it is non-monotonic, it is non-constant so there exists
an x ∈ (a, b) such that f (x) ̸= f (a). Consider f ([a, b]): by Corollary 18.3, the set
must be an interval, and by Theorem 18.1 it must be bounded and attain its bounds,
thus being some closed interval [c, d]. If f (x) > f (a), then d > f (a), in which case
f ((a, b)) must still contain d, and thus this set is not open since d is non an interior
point. If f (x) < f (b), then c < f (a), in which case f ((a, b) must still contain c, and
thus this set is not open. Either possibility leads to a contradiction.

Now suppose that f (a) < f (b). Then, by the argument above, f ([a, b]) must be a
closed interval [c, d]. If d > f (b), then d is still in f ((a, b)), and thus this set is not
open. Hence, since d ≥ f (b), then the only remaining possibility is d = f (b), and
hence f (x) ≤ f (b) for all x ∈ [a, b]. Similarly, it can be shown that c = f (a), and
hence f (a) ≤ f (x) for all x ∈ [a, b].

Now consider the interval [a, x]. If f (a) = f (x), this leads to a contradiction fol-
lowing the same argument above. Hence f (a) < f (x), and thus, by applying the
argument above, f (y) ≤ f (x) for all y ∈ [a, b].

Since x and y are chosen arbitrarily, it has been shown that for all x, y ∈ [a, b] where
x ≤ y, then f (x) ≤ f (y), showing that the function non-decreasing, and hence
monotonic. If f (a) > f (b), the above arguments can be applied to − f , to show
that f is non-increasing, and hence monotonic also. Either possibility violates the
original assumption the f is non-monotonic.

All possibilities lead to a contradiction, so the original assumption must be false.
Hence if f (I) is open for any open interval I, then f is monotonic.


