
Math 104: Homework 6 solutions

1. To find the interior of A, consider any element, which can be written as 1/n for
some n ∈ N. For any ϵ > 0, there exists an m ∈ N such that 1/m < ϵ. Consider
the point x = 1/n + 1/(

√
2m). Then x ∈ Nϵ(1/n), but x /∈ Q so x /∈ A. Hence no

neighborhood of 1/n is contained in A. Hence the interior of A is ∅.

Now consider the interior of B. If x ∈ (0, 1), then Nr(x) ⊆ B if r = min{x, 1 − x}.
Consider any element x ∈ B where x ≥ 1. Then x is rational. Choose any ϵ > 0, and
find an n ∈ N such that 1/n < ϵ. But since x + 1/(

√
2n) is irrational and not an

element of Nϵ(1), then x is not in the interior of B. A similar argument can be used
to show that all x ∈ B satisfying x ≤ 0 are not interior points. Hence the interior of
B is (0, 1).

Now consider the closure of A. Since each element of A is isolated, all elements are
isolated, and are not limit points. For any value x ̸= 0, and x /∈ A, then x is a finite
distance from any element of A and hence x is not a limit point. Finally, consider
x = 0. For any neighborhood Nϵ(0), there exists an n ∈ N such that 1/n < ϵ and
hence 1/n ∈ Nϵ(0). Hence 0 is a limit point. The closure of A is therefore A ∪ {0}.

Finally, consider the closure of B. Consider any real number r such that r /∈ B. Since
any neighborhood Nϵ(r) contains a rational number, then Nϵ(r) ∩ B is non-empty
and hence r must be a limit point of B. Thus the closure of B is R.

2. First, consider the function at x = 0. Choose ϵ > 0. Then

|h(x)− h(0)| = |h(x)− 0| < |x|.

Hence, if δ = 0, then |x − 0| < δ implies |h(x)− h(0)| < ϵ. Hence h is continuous at
0.

Now consider x ̸= 0. Suppose x is irrational. Then define a sequence (an) where an
is a rational number in the range (x − 1/n, x + 1/n); by Theorem 4.7, “The Dense-
ness of Q”, this is always possible. Then an → x, and since h(an) = an for all n, then
h(an) → x. However, h(x) = 0, so h is not continuous at x.

Now suppose that x is rational. Then define a sequence an = x +
√

2/n; all of these
terms are irrational, since otherwise it would imply that

√
2 was rational. Then

h(an) = 0 for all n, and hence h(an) → 0. However h(x) = x ̸= 0, so h is not
continuous at x.

Therefore h is continuous only at x = 0.

3. (a) Consider f (x) = x2 at x = 2. Choose ϵ > 0. Then

| f (x)− f (2)| = |x2 − 4| = |x − 2| · |x + 2|.



For all values of ϵ, the value of δ can be chosen to be less than 1, in which case
|x − 2| < 1, so |x + 2| < 5. Hence if δ = min{1, ϵ/5}, then |x − 2| < δ implies
that

| f (x)− f (2)| < ϵ

5
· 5 = ϵ

so f is continuous at 2.

(b) Consider f (x) =
√

x at 0. This function has a natural domain [0, ∞), so x ≥ 0.
Then

| f (x)− f (0)| = |
√

x − 0| =
√

x.

Hence for any ϵ > 0, if δ = ϵ2, then |x − 0| < δ implies

| f (x)− f (0)| <
√

ϵ2 = ϵ.

Hence f is continuous at 0.

(c) Consider f (x) = x sin(1/x) for x ̸= 0 and f (0) = 0. Then

| f (x)− f (0)| ≤ |x − 0| = |x|.

Hence, for any ϵ > 0, if δ = ϵ, then |x − 0| < δ implies

| f (x)− f (0)| ≤ δ = ϵ

so f is continuous at 0.

(d) Consider f (x) = x3. Then for an arbitrary x0,

| f (x)− f (x0)| = |x3 − x3
0| = |x − x0| · |x2 + xx0 + x2

0|.

By restricting δ to be less than 1, in which case |x − x0| < 1, it can be seen that

|x2 + xx0 + x2
0| ≤ |x2|+ |x| · |x0|+ |x2

0|
≤ (|x0|+ 1)2 + (|x0|+ 1)|x0|+ x2

0 = 3x2
0 + 3|x0|+ 1.

Hence if K = 3x2
0 + 3|x0|+ 1 > 0, then

| f (x)− f (x0)| ≤ K|x − x0|.

For any ϵ > 0, if δ = ϵ/K, then |x − x0| < δ implies

| f (x)− f (x0)| < Kδ = K
ϵ

K
= ϵ.

Hence f is continuous at x0. Since x0 is arbitrary, f is continuous on R.

4. Consider the map f (x) = x2. If x ∈ (0, 1), then f (x) ∈ (0, 1). Suppose that the map
has a fixed point, so that f (x) = x. Then x2 = x, so x(x − 1) = 0, and therefore
x = 0, 1 are the only solutions. Since these both lie outside (0, 1), there are no fixed
points.



5. This is false. Consider the function

f (x) =
{

0 if x ̸= 0,
1 if x = 1.

Consider any sequence (an) that converges to zero. Since f is even, f (0 + an) −
f (0 − an) = 0, so lim f (0 + an)− f (0 − an) = 0. However, f is not continuous at
x = 0. To verify this, consider the sequence an = 1/n. Then f (an) = 0 for all n and
hence lim f (an) = 0. However, lim an = 0, and f (0) = 1.

6. A polynomial of odd degree can be written as

p(x) =
K

∑
k=0

akxk

where K is odd and aK ̸= 0. Assume aK > 0. Then the polynomial can be written as

p(x) = xK

(
aK +

K−1

∑
k=0

ak

xK−k

)
.

Now, consider the sequence

sn = aK +
K−1

∑
k=0

ak

nK−k .

Since all the terms of the form 1/nm for m ∈ N converge to zero, then lim sn = aK.
Hence, there exists N1 such that n > N1 implies

|sn − aK| < aK

and hence sn > 0. Thus

p(N1 + 1) = (N1 + 1)KsN1+1 > 0.

Similarly, the sequence

tn = aK +
K−1

∑
k=0

ak

(−n)K−k

converges to aK, so there exists an N2 such that n > N2 implies tn > 0. Hence

p(−(N2 + 1)) = −(N2 + 1)KsN2+1 < 0.

Applying the Intermediate Value Theorem shows that there exists an x ∈ (−(N2 +
1), N1 + 1) such that p(x) = 0. Hence the polynomial has a real root. For the case
when aK < 0, the same argument can be applied to the polynomial −p(x).



7. Consider g(x) = f (x + 1)− f (x) on the interval [0, 1]. Then g(0) = f (1)− f (0) and
g(1) = f (2) − f (1) = f (0) − f (1) = −g(0). If g(0) = 0, then setting x = 0 and
y = 1 satisfies |x − y| = 1 and f (x) = f (y).

Otherwise, if g(0) ̸= 0, then the Intermediate Value Theorem can be applied to the
interval [0, 1], to show that there exists an x ∈ (0, 1) such that g(x) = 0. Putting
y = x + 1 satisfies |x − y| = 1 and f (x) = f (y).

8. Pick a point x0 ∈ (a, b). Then there exists a ∆ such that N = (x0 − 2∆, x0 + 2∆) ⊆
(a, b). Now define p = f (x0 − ∆) and q = f (x0 + ∆), and consider x ∈ [x0 − ∆, x0].
By using the convexity property applied to the point x between x0 − ∆ and x0,

f (x) ≥ f (x0)(x − x0 + ∆) + (x0 − x)p
∆

= f (x0) +
(x − x0)( f (x0)− p)

∆

and hence

f (x)− f (x0) ≥
(x − x0)( f (x0)− p)

∆
. (1)

Applying the convexity property to the point x0 between x and x0 + ∆ shows that

f (x0) ≥
f (x)((x0 + ∆)− x0) + (x0 − x)q

x0 + ∆ − x

and hence
f (x0)(x0 + ∆ − x) ≥ f (x)∆ + (x0 − x)q

so

f (x)− f (x0) ≤
(x − x0)(q − f (x0)

∆
. (2)

If K = max{( f (x0)− p)/∆, (q − f (x0))/∆}, then combining Eqs. 1 & 2 shows that

| f (x)− f (x0)| ≤ K|x − x0|.

By symmetry, the same arguments can be applied to show that this inequality also
holds for x ∈ [x0, x0 + ∆]. From here, it can be seen that for any ϵ > 0, if δ = ϵ/K,
then |x − x0| < δ implies that

| f (x)− f (x0)| < Kδ = K
ϵ

K
= ϵ.

Hence f must be continuous at any interior point. To prove that f is continuous at
a given x0, the above proof requires that function values are available on both sides
of x0, which will be not be true at the end points. An example of a convex function
that is not continuous at the end points is

f (x) =
{

1 if x ̸= a and x ̸= b,
0 if x = a or x = b.


