Math 104: Homework 6 solutions

1.

3.

To find the interior of A, consider any element, which can be written as 1/n for
some n € IN. For any € > 0, there exists an m € IN such that 1/m < e. Consider
the point x = 1/n +1/(v/2m). Then x € Ne(1/n), but x ¢ Qso x ¢ A. Hence no
neighborhood of 1/n is contained in A. Hence the interior of A is @.

Now consider the interior of B. If x € (0,1), then N;(x) C Bif r = min{x,1 — x}.
Consider any element x € B where x > 1. Then x is rational. Choose any € > 0, and
find an n € IN such that 1/n < e. But since x + 1/ (\/in) is irrational and not an
element of N¢(1), then x is not in the interior of B. A similar argument can be used
to show that all x € B satisfying x < 0 are not interior points. Hence the interior of
Bis (0,1).

Now consider the closure of A. Since each element of A is isolated, all elements are
isolated, and are not limit points. For any value x # 0, and x ¢ A, then x is a finite
distance from any element of A and hence x is not a limit point. Finally, consider
x = 0. For any neighborhood N¢(0), there exists an n € N such that 1/n < € and
hence 1/n € N¢(0). Hence 0 is a limit point. The closure of A is therefore A U {0}.

Finally, consider the closure of B. Consider any real number r such that » ¢ B. Since
any neighborhood Ne(r) contains a rational number, then Ne(r) N B is non-empty
and hence r must be a limit point of B. Thus the closure of B is IR.

First, consider the function at x = 0. Choose € > 0. Then

1 (x) = h(0)| = |h(x) — O] < |x].
Hence, if § = 0, then |x — 0| < J implies |h(x) — h(0)| < e. Hence h is continuous at
0.

Now consider x # 0. Suppose x is irrational. Then define a sequence (a,) where a,
is a rational number in the range (x — 1/n,x 4+ 1/n); by Theorem 4.7, “The Dense-
ness of Q”, this is always possible. Then a,, — x, and since h(a,) = a, for all n, then
h(a,) — x. However, h(x) = 0, so h is not continuous at x.

Now suppose that x is rational. Then define a sequence a, = x + V2 /n; all of these
terms are irrational, since otherwise it would imply that v/2 was rational. Then
h(a,) = 0 for all n, and hence h(a,) — 0. However h(x) = x # 0, so h is not
continuous at x.

Therefore h is continuous only at x = 0.

(a) Consider f(x) = x? at x = 2. Choose € > 0. Then

f) = f@)] = Ix* 4] =[x 2| [x +2|.



For all values of ¢, the value of é can be chosen to be less than 1, in which case
|lx —2] < 1,0 |x+ 2| < 5. Hence if 6 = min{1,e/5}, then |x — 2| < § implies

that .
f)-f@I<z-5=e

so f is continuous at 2.
(b) Consider f(x) = y/x at 0. This function has a natural domain [0, o), so x > 0.

Then
f(x) = f(0)] = |Vx = 0] = Vx.
Hence for any € > 0, if § = €2, then |x — 0| < 6 implies
f(x) = fO)| < Ve2 =e.

Hence f is continuous at 0.
(c) Consider f(x) = xsin(1/x) for x # 0 and f(0) = 0. Then

|f(x) = f(0)] < [x—0] = [x].
Hence, for any € > 0, if § = ¢, then |x — 0| < J implies
|f(x) = f(0)|<d=¢

so f is continuous at 0.

(d) Consider f(x) = x°. Then for an arbitrary x,,
|f(2) = f(xo)| = [x° = x| = |x — xo| - [x* + xxp + x5
By restricting ¢ to be less than 1, in which case |x — x| < 1, it can be seen that

X% +xxg +x5| < ||+ x| - |x0| + |«
< (|xo] +1)% + (|xo| + 1)|x0| + x3 = 3x2 + 3|xg| + 1.

Hence if K = 3x3 + 3|xp| +1 > 0, then
f(x) = f(x0)| < Klx = xol.

€
f(x) = f(x)| < K& =Ky =e.

Hence f is continuous at x. Since x is arbitrary, f is continuous on R.

4. Consider the map f(x) = x2. If x € (0,1), then f(x) € (0,1). Suppose that the map
has a fixed point, so that f(x) = x. Then x> = x, so x(x — 1) = 0, and therefore
x = 0,1 are the only solutions. Since these both lie outside (0, 1), there are no fixed
points.



5. This is false. Consider the function

0 ifx#0,
f(x):{1 ifiil.

Consider any sequence (a,) that converges to zero. Since f is even, f(0 + a,) —
f(0—ay,) =0,s0limf(0+a,) — f(0 —a,) = 0. However, f is not continuous at
x = 0. To verify this, consider the sequence a, = 1/n. Then f(a,) = 0 for all n and
hence lim f(a,) = 0. However, lima, = 0,and f(0) = 1.

6. A polynomial of odd degree can be written as

K
p(x) = Z ﬂkxk
k=0

where K is odd and ag # 0. Assume ag > 0. Then the polynomial can be written as

K-1
_ K ag
p(x) = x (K+k_zoﬂ> -

Now, consider the sequence

K1 g
Sn = dg —+ Z m
k=0
Since all the terms of the form 1/n" for m € IN converge to zero, then lims,, = ag.
Hence, there exists Nj such that n > Nj implies
sy —ak| < ag
and hence s, > 0. Thus
p(Ny +1) = (N; + )%y, 11 > 0.
Similarly, the sequence
K1 g
th=ag+ Y ——
n kg) (—n)K*k
converges to ag, so there exists an N; such that n > N implies t, > 0. Hence
p(—(N2+1)) = —=(N2 4+ 1) sp,41 < 0.

Applying the Intermediate Value Theorem shows that there exists an x € (—(N, +
1), N1 + 1) such that p(x) = 0. Hence the polynomial has a real root. For the case
when ag < 0, the same argument can be applied to the polynomial —p(x).



7. Consider g(x) = f(x+1) — f(x) on the interval [0, 1]. Then g(0) = f(1) — f(0) and

g(1) = f(2) = f(1) = f(0) — f(1) = —g(0). If g(0) = O, then setting x = 0 and
y = 1 satisfies |[x —y| = 1and f(x) = f(y).

Otherwise, if ¢(0) # 0, then the Intermediate Value Theorem can be applied to the
interval [0,1], to show that there exists an x € (0,1) such that g(x) = 0. Putting
y = x + 1 satisfies |[x —y| = 1and f(x) = f(y).

. Pick a point xg € (a,b). Then there exists a A such that N = (xo — 24, xp +2A) C
(a,b). Now define p = f(xo — A) and g = f(xo + A), and consider x € [xg — A, xo].
By using the convexity property applied to the point x between xp — A and x,

Flx) > f(x0)(x —x0 —i—AA) + (xo —x)p  f(x) + (x—xo)(i(xo) —p)

and hence

Flx) — flxy) > B0V 2 ), )

Applying the convexity property to the point xg between x and x¢ + A shows that

f(x)((x0+A) — x9) + (x0 — X)q
Xo+A—x

f(xo0) >

and hence
f(xo)(xo+A—x) > f(x)A+ (x0—x)q
SO

Flx) — flay) < EmTN1 =S o) @

If K = max{(f(x0) — p)/A, (9 — f(x0))/A}, then combining Eqs.[I| &2 shows that
f(x) = f(x0)[ < K|x — x.

By symmetry, the same arguments can be applied to show that this inequality also
holds for x € [xg, xo + A]. From here, it can be seen that for any € > 0, if § = ¢/K,
then |x — x| < ¢ implies that

<
K

Hence f must be continuous at any interior point. To prove that f is continuous at
a given xo, the above proof requires that function values are available on both sides
of xg, which will be not be true at the end points. An example of a convex function
that is not continuous at the end points is

[f(x) = f(x0)| <K& =Kz =e.

|1 ifx #aand x # b,
f(x)_{O ifx=aorx=>0.



