
Math 104: Homework 5 solutions

1. (a) Suppose p > 1. Then
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n=2

1
n(log n)p ≤ 1

2(log 2)p +
∫ N

2

1
x(log x)p dx

≤ 1
2(log 2)p +

∫ log N

log 2

1
yp dy

≤ 1
2(log 2)p +

[
1 − p
yp−1

]log N

log 2

≤ 1
2(log 2)p + (1 − p)

[
(log N)1−p − (log 2)1−p

]
where the substitution x = log y has been used. Since 1 − p < 0, (log N)1−p →
0 as N → ∞. Hence the sum is bounded above, and since all the terms are
positive, it must converge. Now suppose p = 1. Then

N

∑
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1
n(log n)

≥
∫ N+1
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1
x(log x)
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≥
∫ log(N+1)

log 2

1
y

dy

≥ [log y]log(N+1)
log 2

≥ log log(N + 1)− log log 2

and since log log(N + 1) is unbounded as N → ∞, the sum must diverge. Now
consider the case when p < 1. Observe that for N ≥ 3,

N

∑
n=2

1
n(log n)p =

1
2(log 2)p +

N

∑
n=2

1
n(log n)p

≥ 1
2(log 2)p +

N

∑
n=2

1
n(log n)

which is true since log n > 1 for n ≥ 3. Since it was previously shown that the
sum diverges for p = 1, it must diverge for p < 1 also.

(b) Choose an ϵ > 0. The Cauchy criterion states that there exists an N such that
n ≥ m > N implies that ∣∣∣∣∣ n

∑
k=m

an

∣∣∣∣∣ < ϵ

2
.



For any m > N, set n = 2m. Then, by making use of the fact that all the terms
are positive, and that if j > i then aj ≤ ai,

ϵ

2
>

∣∣∣∣∣ 2m

∑
k=m

ak

∣∣∣∣∣ ≥
∣∣∣∣∣ 2m

∑
k=m

a2m

∣∣∣∣∣ = (m + 1)a2m.

Now consider an integer l > 2N + 1. If l is even, then l = 2m for some m > N,
so

|lal| = lal = 2ma2m < 2(m + 1)a2m <
2ϵ

2
= ϵ.

If l is odd, then l = 2m + 1 for some m > N, so

|lal| = lal = (2m + 1)a2m+1 < 2(m + 1)a2m+1 ≤ 2(m + 1)a2m <
2ϵ

2
= ϵ.

Hence |lal| < ϵ for all l > 2N + 1, and thus limn→∞ nan = 0.
The converse result is not true. Let (an) be defined by a1 = 1 and an =
1/(n log n) for n ≥ 2. Then

nan =
n

n log n
=

1
log n

which converges to 0 as n → 0. However, as shown in part (a), ∑ 1/(n log n)
diverges.

2. • d1(x, y) = (x − y)2 is not a metric. Suppose x = 0, y = 1, and z = 2. Then

d1(x, z) = 22 = 4

but
d1(x, y) + d2(y, z) = 11 + 12 = 2

and thus the triangle inequality is not satisfied.

• d2(x, y) =
√
|x − y| is a metric. Consider the three properties of a metric:

M1. If x ̸= y, then |x − y| > 0 and hence d(x, y) > 0. If x = y, then d(x, y) = 0.
M2. d(x, y) =

√
|x − y| =

√
|y − x| = d(y, x) and thus it is symmetric.

M3. Suppose that the triangle inequality did not hold. The there exists x, y, and
z such that

d(x, y) + d(y, z) < d(x, z).

Then since both sides are positive, this would imply that

(d(x, y) + d(y, z))2 < d(x, z)2

so that
|x − y|+ |y − z|+ 2

√
|x − y|

√
|y − z| < |x − z|.



But by making use of the usual triangle inequality, |x − y|+ |y − z| ≥ |x −
z| and hence

|x − z|+ 2
√
|x − y|

√
|y − z| < |x − z|

But since 2
√
|x − y|

√
|y − z| ≥ 0, this is a contradiction. Hence d(x, y) +

d(y, z) ≥ d(x, z) for all x, y, z ∈ R.

• d3(x, y) = |x2 − y2| is not a metric. d(1,−1) = |11 − (−1)2| = 0, but a zero
distance is not permissible for distinct elements.

• d4(x, y) = |x − 2y| is not a metric, since it does not satisfy d(x, y) = d(y, x).

3. (a) Consider the three properties of a metric:

M1. Since d is defined as a supremum of non-negative terms, then d(x, y) ≥ 0
for all x and y. If d(x, y) = 0, then sup{|xi − yi| : i ∈ N} = 0, so |xi − yi| =
0 for all n ∈ N.

M2. For all x and y

d(x, y) = sup{|xi − yi| : i ∈ N}
= sup{|yi − xi| : i ∈ N}
= d(y, x)

and thus d is symmetric.
M3. Consider three sequences x, y, and z. Then

d(x, y) + d(y, z) = sup{|xi − yi| : i ∈ N}+ sup{|yi − zi| : i ∈ N}.

Now consider the set

{|xi − yi|+ |yi − zi| : i ∈ N}.

Since sup{|xi − yi| : i ∈ N} is an upper bound for all the |xi − yi|, and
sup{|yi − zi| : i ∈ N} is an upper bound for all the |yi − zi|, then the
sum of these two bounds must be an upper bound for all terms of the form
|xi − yi|+ |yi − zi|, and hence

d(x, y) + d(y, z) ≥ sup{|xi − yi|+ |yi − zi| : i ∈ N}
≥ sup{|xi − zi| : i ∈ N} = d(x, z),

where the usual triangle inequality for real numbers has been used.

(b) d∗ does not define a metric since it is not well-defined. Consider xn = 1 and
yn = 2 for all n. Then

N

∑
n=1

|xn − yn| = N

and hence ∑ |xn − yn| diverges, meaning that d∗ does not have a well-defined
value.
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Figure 1: There neighborhoods of radius cosh−1 5/4 in the Poincaré disk, computed (a)
analytically, and (b) with a C++ program. The neighborhoods at (0, 0), (1/2, 0), and (3/4, 0)
are shown in blue, purple, and red respectively.

4. Write u = (λ, 0) and v = (v1, v2). The neighborhoods are defined by all v such that
d(u, v) < r, which corresponds to

1 +
2||u − v||2

(1 − ||u||2)(1 − ||v||2) <
5
4

.

Substituting in the expressions for u and v gives

(λ − v1)
2 + v2

2
(1 − λ2)(1 − v2

1 − v2
2)

<
1
8

and since the two terms in the denominator are positive,

8v2
1 − 16λv1 + 8λ2 + 8v2

2 < (1 − λ2)− (v2
1 + v2

2)(1 − λ2)

(9 − λ2)v2
1 − 16λv1 + (9 − λ2)v2

2 < 1 − 9λ2

(9 − λ2)

(
v1 −

8λ

9 − λ2

)2

− 64λ2

9 − λ2 + (9 − λ2)v2
2 < 1 − 9λ2

(
v1 −

8λ

9 − λ2

)2

+ v2
2 <

(1 − 9λ2)(9 − λ2) + 64λ2

(9 − λ2)2(
v1 −

8λ

9 − λ2

)2

+ v2
2 <

9(1 − λ2)2

(9 − λ2)2 =

(
3(1 − λ2)

9 − λ2

)2

.



This defines a disk, centered on (8λ/(9 − λ2), 0), with radius 3(1 − λ2)/(9 − λ2).
Hence, the three neighborhoods are

• Nr((0, 0)): a disk, radius 1/3, centered on (0, 0),
• Nr((1/2, 0)): a disk, radius 9/35, centered on (16/35 , 0),
• Nr((3/4, 0)): a disk, radius 7/45, centered on (32/45 , 0).

Figure 1(a) shows a picture of these neighborhoods. Even though the correspond to
the same radius, the circles become progressively smaller for points further away
from the origin, corresponding to distances becoming larger in the Poincaré metric.

Another approach to compute the neighborhoods is to make use of a small computer
program to scan the disk, and directly test whether a point is within the disk or not.
A C++ program to do this is given in the appendix. The neighborhoods, shown in
Fig. 1(b), agree with those computed analytically.

5. Write N(i)
r (p) for the neighborhood of radius r at p with respect to the metric di. If

the two metrics are equivalent, then for all p ∈ S, and for all ϵ > 0, there exists a
δ > 0 such that

N(2)
δ (p) ⊆ N(1)

ϵ (p).
In addition, for all ∈ S, and for all ϵ > 0, there exists a δ > 0 such that

N(1)
δ (p) ⊆ N(2)

ϵ (p).

Now consider a sequence (sn) that converges to s with respect to d1. Choose any
ϵ > 0. Then there exists a δ > 0 such that N(1)

δ (p) ⊆ N(2)
ϵ (p). Since sn converges to

s with respect to d1, there exists and N such that n > N implies

d1(sn, s) < δ

and thus sn ∈ N(1)
δ (s). Hence for all n > N, sn ∈ N(2)

ϵ (s), and thus d2(sn, s) < ϵ.
Hence (sn) converges to s with repsect to d2 also.

6. Choose an ϵ > 0. Then there exists a K such that k > K implies that

d(pnk , p) <
ϵ

2
.

Since (pn) is a Cauchy sequence, there exists N such that for all n, m > N,

d(pm, pn) <
ϵ

2
.

Now, since there are an infinite number of available terms, there exists an index nl
in the subsequence such that l > K, and nl > N. Now, if n > N, then by using the
triangle inequality,

d(pn, p) ≤ d(pn, pnl) + d(pnl , p)

<
ϵ

2
+

ϵ

2
= ϵ.



Thus the full sequence (pn) converges to p.

7. Suppose that (pn) and (qn) are Cauchy sequences in a space X with metric d. From
the triangle inequality,

d(pn, qn) ≤ d(pn, pm) + d(pm, qm) + d(qm, qn)

for all m and n, and hence

d(pn, qn)− d(pm, qm) ≤ d(pn, pm) + d(qm, qn).

Swapping n and m gives

d(pm, qm)− d(pn, qn) ≤ d(pn, pm) + d(qm, qn)

and combining with the previous expression shows that

|d(pn, qn)− d(pm, qm)| ≤ d(pn, pm) + d(qm, qn).

Now consider the sequence (an) defined by an = d(pn, qn). Choose ϵ > 0. Then
there exists an N1, such that for all m, n > N1, d(pn, pm) < ϵ/2. Similarly, there
exists an N2, such that for all m, n > N2, d(qn, qm) < ϵ/2. Define N = max{N1, N2}.
Then for all m, n > N,

|am − an| = |d(pn, qn)− d(pm, qm)|
≤ d(pn, pm) + d(qm, qn) <

ϵ

2
+

ϵ

2
= ϵ.

Hence (an) is a Cauchy sequence. Since the an ∈ R, this implies that (an) converges.

8. This problem can be most easily done by making use of some linear algebra. For
u = (u1, u2), the alternative norm can be written as

||u||S =
√

u2
1 + u2

2 + u1u2

=

√(
u1 +

u2

2

)2
+

3u2
2

4

=
√

w2
1 + w2

2

= ||w||

for w = Au, where A is the 2 × 2 matrix

A =

(
1 1/2

0
√

3/2

)



and ||w|| refers to the Euclidean norm of w. Hence, for any u, v ∈ R2, the alternative
metric can be written in terms of the Euclidean metric as

dS(u, v) = ||u − v||S
= ||A(u − v)||
= dE(Au, Av).

The metric A is invertible, with inverse

A−1 =

(
1 1/

√
3

0 2/
√

3

)
.

Checking that dS is a metric can then be carried out by making use of the fact that
dE is a metric:

M1. For any u, v ∈ R2, dS(u, v) = dE(Au, Av) ≥ 0. Since the matrix A is invertible,
u = v if and only if Au = Av, and thus dS(u, v) = 0 if and only if u = v.

M2. For any u, v ∈ R2, dS(u, v) = dE(Au, Av) = dE(Av, Au) = dS(v, u) and thus
the metric is symmetric.

M3. For any u, v, w ∈ R2,

dS(u, w) = dE(Au, Aw)

≤ dE(Au, Av) + dE(Av, Aw)

= dS(u, v) + dS(v, w)

and thus the triangle inequality is satisfied.

To show that the two metrics are equivalent, consider any ϵ > 0. Since both the
Euclidean norm and the alternative norm are invariant under translations, it suffices
to prove equivalence at 0 = (0, 0). If u ∈ NE

ϵ/2(0), then

u2
1 + u2

2 <
ϵ2

4

and thus |u1| < ϵ/2 and |u2| < ϵ/2, so u1 < ϵ/2 and u2 < ϵ/2. Hence

u2
1 + u2

2 + u1u2 <
ϵ2

4
+

ϵ2

4
=

ϵ2

2
< ϵ2.

Thus dS(u) < ϵ, and hence u ∈ NS
ϵ (0). Hence NE

ϵ/2(0) ⊆ NS
ϵ (0). Now suppose that

u ∈ NS
ϵ/2(0). Then (

u1 +
u2

2

)2
+

3u2
2

4
<

ϵ2

4



and hence ∣∣∣u1 +
u2

2

∣∣∣ < ϵ

2
,

√
3

2
|u2| <

ϵ

2
.

By making use of the triangle inequality,

|u1| <
ϵ

2
+

|u2|
2

<
ϵ

2
+

ϵ

2
√

3
=

ϵ

2

(√
3 + 2

2
√

3

)
.

Hence

u2
1 + u2

2 <
ϵ2

4
+

ϵ2

4

(
7 + 4

√
3

6

)
<

ϵ2

4
+

ϵ2

4

(
7 + 4 × 2

6

)
< ϵ2

and thus u ∈ NE
ϵ (0). Hence NS

ϵ/2(0) ⊆ NE
ϵ (0) and the two metrics are equivalent.



Appendix

This short C++ code scans points in the Poincaré disk to see whether they are within the
neighborhoods of interest. The points found to be in each neighborhood are saved into
text files, which can be read by many plotting programs.
#include <cstdio>
using namespace std;

// Constants setting the size and spacing of the scanning grid
const double h(0.02);
const int M(50);

// This function returns the hyperbolic cosh of the metric. There’s no need to
// do inverse cosh, since the radius is defined in terms of an inverse cosh
// anyway.
double cosh d(double u1,double u2,double v1,double v2) {

return 1+2*((u1−v1)*(u1−v1)+(u2−v2)*(u2−v2))
/((1−(u1*u1+u2*u2))*(1−(v1*v1+v2*v2)));

}

int main() {
double x,y;

// Open output files for each of the three neighborhoods
FILE *F1(fopen("N1","w")),

*F2(fopen("N2","w")),

*F3(fopen("N3","w"));

// Check that output files opened correctly
if(F1==NULL | | F2==NULL | | F3==NULL) {

fputs("File open error\n",stderr);
return 1;

}

// Sweep through points in a square
for(y=−M*h;y<(0.5+M)*h;y+=h) {

for(x=−M*h;x<(0.5+M)*h;x+=h) {

// Skip points that lie outside the disk
if(x*x+y*y>=1) continue;

// Check whether the current point is within any of the
// neighborhoods. If so, then save this point to the
// corresponding output file.
if(cosh d(x,y,0,0)<1.25) fprintf(F1,"%g %g\n",x,y);
if(cosh d(x,y,0.5,0)<1.25) fprintf(F2,"%g %g\n",x,y);
if(cosh d(x,y,0.75,0)<1.25) fprintf(F3,"%g %g\n",x,y);

}
}

// Close the output files
fclose(F1);
fclose(F2);
fclose(F3);

}


