
Math 104: Homework 4 solutions

1. (a) From the diagram, it can be seen that for every m ∈ N, the fraction 1
m occurs

infinitely many times in the sequence, and thus there is a constant subsequence
snk = 1

m , so 1
m ∈ S. In addition there is a subsequence tk = snk = 1

k which
converges to 0, so 0 ∈ S.
Now consider any number l < 0. For all n ∈ N, |sn − l| > |l| and thus l /∈ S.
Similarly, consider any number l > 1. Then for all n ∈ N, |sn − l| > l − 1
and thus l /∈ S. Finally, suppose 0 < l < 1 but l /∈ { 1

n : n ∈ N}. Then,
there exists an m ∈ N such that 1

m+1 < l < 1
m , and hence for all n ∈ N,

|sn − l| > min{ 1
m − l, l − 1

m+1} > 0, so l /∈ S.

Therefore S = {0} ∪ { 1
n : n ∈ N}.

(b) By Theorem 11.7, lim sup sn = sup S = 1 and lim inf sn = inf S = 0.

2. Suppose that |sn| is bounded. Then there exists an M such that |sn| < M for all n.
Hence for all N, vN = sup{|sn| : n > N} ≤ M, since M is an upper bound for the
set of all |sn|. Since vN is bounded and monotonic it must converge to a real number
and thus lim sup |sn| < ∞.

Now suppose the lim sup |sn| < ∞. Since |sn| ≥ 0 for all n, it is not possible for
lim sup |sn| = −∞, and thus lim sup |sn| = m for some real number m. By Theorem
9.1 convergent sequences are bounded, and thus vN < M for all N ∈ N and for
some M ∈ R. Hence v1 = sup{|sn| : n > 1} < M. Hence |sn| ≤ M for all n ≥ 2,
and thus |sn| ≤ max{s1, M} for all n ∈ N. Hence (sn) is bounded.

3. Suppose (an) is a sequence defined for n ∈ N such that lim inf |an| = 0. Now define
a subsequence (ank) where n1 < n2 < n3 < . . . are defined such that

|ank | ≤
1
k2

for all k ∈ N. In addition, set n0 = 0 for convenience.

To show it always possible to choose a sequence this way, suppose it was not possi-
ble to choose an nk for some k ∈ N. In that case, for all n > nk−1, |an| > 1/k2. Then
inf{|an| : n > nk−1} ≥ 1/k2, which implies that lim inf |an| ≥ 1/k2 which would be
a contradiction.

It has been previously shown that ∑∞
k=1 1/k2 converges. Hence, by using the com-

parison test with the above inequality, ∑∞
k=1 ank converges also.

4. (a) Define an = n3/2n. Then

an+1

an
=

(n + 1)3

2n+1
2n

n3 =
(1 + 1

n )
3

2
.
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Since 1
n → 0 as n → ∞, then by the limit theorems for addition and multiplica-

tion of sequences, an+1/an → 1/2. Hence, by the ratio test, ∑ n3/2n converges.

(b) Consider a partial sum of the first N terms:

N

∑
n=1

√
n + 1 −

√
n = (

√
N + 1 −

√
N) + (

√
N −

√
N − 1) + . . . + (

√
2 −

√
1).

Since all but the first and last terms cancel,

N

∑
n=1

√
n + 1 −

√
n =

√
N + 1 −

√
1 =

√
N + 1 − 1,

and thus ∑
√

n + 1 −
√

n diverges to infinity.

(c) Define an = 1/
√

n!. Then

an+1

an
=

√
n!√

(n + 1)!
=

1√
(n + 1)

and hence an+1/an → 0 as n → ∞. Hence, by the ratio test, ∑ 1/
√

n! → 0.

(d) Define an = 2−3n+(−1)n
. Then

an+1

an
=

2−3(n+1)+(−1)n+1

2−3n+(−1)n = 2−3+(−1)n+1−(−1)n
= 2−3−2(−1)n

,

which is 1/2 for even n and 1/32 for odd n. Hence lim sup |an+1|/|an| = 1/2, and
the series converges.

(e) Define an = n!/nn, and let bn = 2/n2. Observe that a1 = 1/1 ≤ b1. For n ≥ 2,

n!
nn =

(
1
n

)(
2
n

)
. . .

(n
n

)
≤

(
1
n

)(
2
n

)
= bn.

Hence, since 0 < an ≤ bn for all n, and ∑ bn converges, then ∑ an converges.

5. (a) If (un) and (vn) are equal apart from at finitely many n, then there exists an
N1 ∈ N such that un = vn for all n > N1. Now, pick any ϵ > 0, and suppose
∑ un converges. Then there exists an N2 ∈ N such that n ≥ m > N2 implies
that ∣∣∣∣∣ n

∑
k=m

uk

∣∣∣∣∣ < ϵ.
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Set N = max{N1, N2}. Then for all n ≥ m > N,∣∣∣∣∣ n

∑
k=m

vk

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
k=m

uk

∣∣∣∣∣ < ϵ,

and hence ∑ vn converges. The same argument can be used to show that if
∑ vn converges, then so does ∑ un. Hence ∑ un and ∑ vn either both converge
or both diverge.

(b) This is false. Let

un =

{
0 if n is odd
2
n if n is even

and

vn =

{
0 if n is odd
4

n2 if n is even.

Hence, un = vn for all odd n. However, if n = 2N or n = 2N + 1, then

n

∑
k=1

uk =
N

∑
k=1

1
k

,

which diverges, but
n

∑
k=1

vk =
N

∑
k=1

1
k2

which converges.

(c) If (un/vn) → 1 as n → ∞, then there exists an N such that n > N implies that∣∣∣∣un

vn
− 1

∣∣∣∣ < 1
2

and hence
1
2
<

un

vn
<

3
2

,

so that
vn

2
< un <

3vn

2
.

Now suppose ∑ vn converges. Since ∑∞
n=N

3vn
2 converges, then ∑∞

n=N un con-
verges by the comparison test. Hence ∑∞

n=1 un converges, since it differs by a
finite sum of terms.
Suppose ∑ un converges. Since vn ≤ 2un for all n > N, then ∑∞

n=N vn converges
by the comparison test. Hence ∑∞

n=1 vn converges, since it differs by a finite
sum of terms. Hence ∑ un and ∑ vn either both converge or both diverge.
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(d) This is false. Consider un = 1/n and vn = 1/n2. Then since un → 0 and
vn → 0, the limit theorems for sequences assert that un − vn → 0. However,
∑ un diverges but ∑ vn converges.

(e) This is false. Consider the sequence un = 2(−1)n−n. By the root test,

(un)
1/n = 2((−1)n−n)/n → 1/2

as n → ∞, and thus the sequence is convergent. However, if n is odd,

un+1

un
=

2−(n+1)+(−1)n+1

2−n+(−1)n =
2−n−1+1

2−n−1 = 2.

Thus, there are an infinite number of terms where un+1/un > 3/2 > 1.

6. Consider the sequence an = (−1)n. Then

2N

∑
n=1

= (−1) + 1 + . . . + (−1) + 1 = 0,

and thus ∑2N
n=1 an → 0 as N → ∞. Similarly,

2N+1

∑
n=1

= (−1) + 1 + . . . + (−1) + 1 + (−1) = −1.

and thus ∑2N
n=1 an → −1 as N → ∞. However, ∑ an alternates between values of 0

and −1, and thus there is no N′ such that n > N′ implies |∑n
k=1 ak − l| < 1/2. Hence

∑ an is divergent.

7. Since bricks are uniform, their center of mass is a distance 1/2 from one end.

� -d1 2

1 � -d1
�-
d2 3

2

1

(a) (b)

In diagram (a), the bricks will be stable as long as the center of mass of brick 1 does
not overhang the edge of brick 2, and thus d1 = 1/2.

In diagram (b), the bricks will be stable as long as the combined center of mass of
bricks 1 and 2 does not edge of brick 3. The center of mass is a distance

0 + 1/2

2
= 1/4

from the left side of brick 2, and thus d2 = 1/4. The aim now is to show that in
general, dn = 1

2n . Suppose the result is true for n and consider the case for n + 1.
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� -dn
�-

dn+1
n+2

n+1

1 to n

If the result is true for n, then as shown in the diagram, bricks 1 to n can be thought
of as being replaced by one brick of mass n. Then the combined center of mass of
this brick and brick n+1 is a distance

0 · n + 1/2 · 1
n + 1

=
1

2(n + 1)

from the left side of brick n+1, and thus dn+1 = 1
2(n+1) . Hence by mathematical

induction, dn = 1
2n for all n ∈ N.

Since ∑ 1
n diverges, then ∑ 1

2n diverges also. Amazingly, this means that it is possible
to make a free-standing tower of bricks with an arbitrarily large overhang. Even in
practice, it is possible to build a tower of bricks where ∑ dn is bigger than one or
two.
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