
Math 104: Homework 3 solutions

1. Suppose tn is bounded so that |tn| ≤ M for all n, where M ≥ 0. If M = 0, then
|tn| ≤ 0 for all n implies that tn = 0 for all n. Thus sntn = 0 for all n and hence
limn→∞ sntn = 0.

Otherwise M > 0. Consider any ϵ > 0. Since sn converges to zero, there exists an N
such that for all n > N,

|sn − 0| = |sn| <
ϵ

M
.

Hence for all n > N,

|sntn − 0| = |sntn| = |sn||tn| ≤ |sn|M <
ϵ

M
M = ϵ.

Thus, for all ϵ > 0, there exists an N such that n > N implies that |sntn − 0| < ϵ,
and thus limn→∞ sntn = 0.

2. (a) Consider any ϵ > 0. Since limn→∞ an = s, there exists an N1 such that n > N1
implies

|an − s| < ϵ

and hence
an > s − ϵ. (1)

Similarly, since limn→∞ bn = s, there exists an N2 such that n > N2 implies

|bn − s| < ϵ

and thus
bn < s + ϵ. (2)

Define N3 = max{N1, N2}. If n > N3, then both of the conditions given in
Eqs. 1 and 2 will hold. Since an ≤ sn ≤ bn it follows that

s − ϵ < sn < s + ϵ.

and thus
−ϵ < s − sn < ϵ.

The result from Exercise 3.5(a) shows that this statement is equivalent to |s −
sn| < ϵ. Hence, for all ϵ > 0, it is possible to construct an N3 such that n > N3
implies |s − sn| < ϵ, so limn→∞ sn = s.

(b) If |sn| ≤ tn for all n, it implies that −tn ≤ sn ≤ tn for all n. Since limn→∞ tn = 0
and limn→∞ −tn = 0, the result from part (a) can be applied and thus limn→∞ sn =
0.
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3. (a) Suppose that a = lim xn. Then, by using the limit theorems for addition and
multiplication,

a = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

3x2
n = 3( lim

n→∞
xn)

2 = 3a2.

Thus a would have to satisfy the quadratic equation a = 3a2, and hence a = 0
or a = 1/3.

(b) By induction, it can be shown that xn ≥ n for all n ≥ 1. For n = 1, x1 = 1 ≥ 1
which is satisfied. Now suppose that the result is true for n and consider the
case for n + 1:

xn+1 = 3x2
n ≥ 3n2 ≥ n2 + 1 ≥ n + 1,

where we have used the result that n2 ≥ n for n ≥ 1. Hence the induction step
is true, and by mathematical induction, xn ≥ n for all n. Now for any M > 0,
then for all n > M, xn > M and thus (xn) diverges to ∞.

(c) From part (b), it is clear that (xn) does not converge to a finite limit, and thus
the assumption used in part (a) is not valid. Hence, the result of (a) does not
provide any information about how the actual sequence behaves.
For different values of x1, different behavior is observed, and part (a) is useful.
Suppose 0 < x1 < 1/3. Then it can be shown that lim xn = 0. If x1 = 1/3 then
xn = 1/3 for all n and lim xn = 1/3. However if x1 = 1/3 + ϵ where ϵ ̸= 0 and
small, then x2 ≈ 1/3 + 2ϵ, meaning that it progressively moves further away
from 1/3. This is frequently refered to as an unstable equilibrium.

4. Figure 1 shows a plot of the function f (x) = 2x/(1 + x), with web plots for two
different values of t. For both t < 1 and t > 1, the sequences rapidly converge to 1.
Define a sequence (dn) according to an = 1 + dn for all n ∈ N. Then

an+1 =
2an

1 + an

=
2 + 2dn

2 + dn

= 1 +
dn

2 + dn

and hence dn+1 = dn/(2 + dn). Consider two cases. First, if 0 < t < 1, then
−1 < d1 < 0. Then define ∆ = 1/(2 + d1), and observe that 1/2 < ∆ < 1. Now,
d2 = d1∆, so −1 < d1 < d2 < 0.

Now, suppose that d1 < dn < 0. Then dn+1 = dn/(2 + dn) ≥ dn∆, and hence
d1 < dn+1 < 0. Hence, by mathematical induction d1 < dn < 1 for all n ∈ N, and
dn+1 ≥ dn∆ for all n ∈ N. Hence

d1∆n−1 ≤ dn < 0.
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Figure 1: A plot of the function that is used to define the recursive sequence in question
3. Web plots are shown for two initial values of t.

Since ∆n−1 → 0 as n → ∞ by Theorem 9.7(c), then dn → 0 by the Squeezing Lemma.
Hence an → 1.

The second case is t ≥ 1, which corresponds to d1 ≥ 0. If dn ≥ 0, then 0 ≤ dn+1 ≤
dn/2. Hence 0 ≤ dn ≤ d1(1/2)n−1 for all n ∈ N. Since (1/2)n → 0, then dn → 0 by
the Squeezing Lemma and hence an → 1.

5. This problem can be broken into two parts. First, suppose that (sn) is a Cauchy
sequence, and consider (cn) defined according to cn = ksn for all n and for some
k ∈ R. Suppose k = 0, so that cn = 0 is a constant sequence. Then for all ϵ > 0,
|cn − cm| = 0 for all m and n, and thus (cn) is a Cauchy sequence. Now consider
k ̸= 0, and choose ϵ > 0. Then, since (sn) is a Cauchy sequence, there exists an N
such that for all m, n > N,

|sn − sm| <
ϵ

|k| .
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Hence for all m, n > N,

|cn − cm| = |ksn − ksm|
= |k| · |sn − sm|
< |k| ϵ

|k| = ϵ

and thus (cn) is a Cauchy sequence.

Now suppose that (cn) and (dn) are Cauchy sequences, and consider (un) defined
by un = cn + dn. Choose any ϵ > 0. Since (cn) is a Cauchy sequence, there exists an
N1 such that for all m, n > N1,

|cn − cm| <
ϵ

2
.

Similarly, there exists an N2 such that for all m, n > N2,

|dn − dm| <
ϵ

2
.

Now set N = max{N1, N2}. Then for all m, n > N,

|un − um| = |(cn + dn)− (cm + dm)|
= |(cn − cm) + (dn − dm)|
≤ |cn − cm|+ |dn − dm|
<

ϵ

2
+

ϵ

2
= ϵ.

Hence (un) is a Cauchy sequence.

Now suppose (un) is a sequence defined as un = asn + btn for a, b ∈ R, where (sn)
and (tn) are Cauchy sequences. By the first result, if (cn) and (dn) are sequences
satisfying cn = asn and dn = btn, then they are Cauchy sequences. Since un =
cn + dn, then by the second result, it is a Cauchy sequence also.

6. (a) Pick any M > 0. Since (sn) diverges to ∞, there exists an N such that for all
n > N,

sn >
M
k

.

Hence for all n > N,

ksn > k
M
k

= M

and thus lim ksn = ∞.

(b) Suppose (sn) diverges to ∞. Then for any M < 0 there exists an N such that
for all n > N,

sn > −M.
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Hence, by the ordering axioms,

−sn < M

for all n > N, and thus lim(−sn) = −∞.
Now suppose lim(−sn) = −∞. Then for any M > 0, there exists an N such
that for all n > N, −sn < −M and hence sn > M. Hence lim sn = ∞ if and
only if lim(−sn) = ∞.

(c) If k < 0, then −k > 0. By part (a), if lim sn = ∞, then lim(−k)sn = ∞. By part
(b), this implies that lim ksn = −∞.

7. The (n + 1)th term can be divided into n fractions of size 1
n , and written as

sn+1 =
1
n
(sn+1 + sn+1 + . . . sn+1).

Since (sn) non-decreasing sequence, sn+1 ≥ sk for k = 1, 2, . . . , n and hence

sn+1 ≥ 1
n
(s1 + s2 + . . . + sn).

Now consider the (n + 1)th average:

σn+1 =
1

n + 1
(s1 + s2 + . . . + sn + sn+1)

≥ 1
n + 1

(
s1 + s2 + . . . + sn +

1
n
(s1 + s2 + . . . + sn)

)
≥ 1

n + 1
n + 1

n
(s1 + s2 + . . . + sn)

≥ 1
n
(s1 + s2 + . . . + sn)

≥ σn,

and thus this sequence is nondecreasing.

8. Consider the set SN = {sn | n > N} for any N ∈ N. Then −1 ∈ SN since there exists
an even number k > N and sk = −1. Since 1 + 1

n > −1 for all n, it follows that
inf SN = min SN = −1. Thus uN = −1 for all N ∈ N.

For any N in N, define L to be the smallest odd number satisfying L > N. This can
be explicitly defined as

L =

{
N + 1 if N is even,
N + 2 if N is odd.
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Then 1 + 1
L ∈ SN. Consider any n > N. If n is odd, then sn = 1 + 1

n and since n ≥ L
it follows that sn ≤ 1 + 1

L . If n is even, then sn = −1 and thus sn ≤ 1 + 1
L also. Thus

sup SN = max SN = 1 + 1
L . Hence

vN = 1 +
1
L
=

{
1 + 1

N+1 if N is even,
1 + 1

N+2 if N is odd.

Since uN is a constant sequence, it follows that

lim inf sn = lim
N→∞

uN = −1.

To determine the convergence of vN, Exercise 8.5(a) can be employed. Define aN = 1
and bN = 1 + 1

N . Then aN ≤ vN ≤ bN for all N, and limN→∞ aN = limN→∞ bN = 1,
so

lim sup sn = lim
N→∞

vN = 1.

Note that in this case lim inf sn ̸= lim sup sn and thus by Theorem 10.7 it follows
that limn→∞ sn is undefined.
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