
Math 104: Homework 2 solutions

1. • A = (0, ∞): Since this is an open interval, the minimum is undefined, and since
the set is not bounded above, the maximum is also undefined. inf A = 0 and
sup A = ∞.

• B = { 1
m + 1

n : m, n ∈ N}: This set does not have a minimum, since for any
element 1

m + 1
n , there is a smaller element 1

m+1 +
1
n . The maximum element is 2,

which is attained for m = n = 1. Hence max B = 2. B is a bounded below by 0.
However, for ϵ > 0, there exists c ∈ N such that 1/c < ϵ, by the Archimedean
property. Thus by putting m = n = 2c, we see that there exists b ∈ B such that
b < ϵ. Hence, ϵ is not a lower bound. Hence 0 is the greatest lower bound, and
thus inf B = 0.

• C = {x2 − x − 1 : x ∈ R}: By completing the square, this can be written as
{(x − 1

2)
2 − 5

4 |x ∈ R}. We know that (x − 1
2)

2 ≥ 0 by Theorem 3.2(iv). Hence
min C = −5

4 which is attained for x = 1
2 . Since the values of C are not bounded

above, the maximum does not exist. Hence inf C = −5
4 and sup C = ∞.

• D = [0, 1] ∪ [2, 3]: Since this set is composed of closed intervals, we have
min D = 0 and max D = 3. Hence inf D = 0 and max D = 3, and thus
inf D = 0 and sup D = 3.

• E = ∪∞
n=1[2n, 2n + 1]: The first interval in this union is [2, 3], and there are

an infinite number of consecutive intervals in the positive direction. Hence
min E = 2, but the maximum does not exist. Thus inf E = 2 and sup E = ∞.

• F = ∩∞
n=1(1−

1
n , 1+ 1

n ): We begin by showing that F = {1}. Choose any x > 1.
Then x = 1 + ϵ for ϵ > 0. Hence, by the Archimedean property, there exists
n ∈ N such that 1

n < ϵ. Hence x /∈ (1 − 1
n , 1 + 1

n ), and thus x /∈ F. Similarly if
x < 1, then x = 1 − ϵ, and and there exists an n such that x /∈ (1 − 1

n , 1 + 1
n ).

However, 1 ∈ (1 − 1
n , 1 + 1

n ) for all n ∈ N. Thus F = {1}, and hence min F =
max F = inf F = sup F = 1.

2. (a) To begin, we show that sup A + sup B is an upper bound for S. Any element
in S can be written as a + b for a ∈ A, and b ∈ B. However, since sup A
is an upper bound for A, then a ≤ sup A. Similiarly, b ≤ sup B, and thus
a + b ≤ sup A + sup B.
We now wish to show that sup A + sup B is the least upper bound for S. As-
sume that t is a upper bound for S, but that t < sup A + sup B. Then for
some ϵ > 0, t = sup A + sup B − ϵ. Now, since sup A is the supremum of
A, there exists a ∈ A such that a > sup A − ϵ

2 . (If this was not the case, then
sup A − ϵ

2 would be an upper bound for A.) Similarly, there exists b ∈ B such
that b > sup B − ϵ

2 . But a + b ∈ S, and

a + b >
(

sup A − ϵ

2

)
+
(

sup B − ϵ

2

)
= t.
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Hence t is not an upper bound, which is a contradiction. Thus if t is an upper
bound, it must satisfy t ≥ sup A + sup B.
sup A + sup B is an upper bound for S, and it is the least upper bound. Hence
sup S = sup A + sup B.

(b) This could be proved by repeating the above argument but with lower bounds
instead of upper bounds. However, an alternative method is to define negated
sets −A = {−a|a ∈ A}, −B = {−b|b ∈ B}, and −S = {−s|s ∈ S}.
We see that −S can be constructed as the set of sums a′ + b′ where a′ ∈ −A
and b′ ∈ −B. Thus, by applying the above result, we know that sup(−S) =
sup(−A) + sup(−B). However, by Corollary 4.5, for any set C, sup(−C) =
− inf C. Hence − inf S = − inf A − inf B and thus inf S = inf A + inf B.

3. This result is not true. As a counterexample, choose A = B = {−2, 1}. Then
sup A = sup B = 1, and hence sup A · sup B = 1. However M = {−2, 1, 4} and
hence sup M = 4 which is not equal to 1.

Note that the counterexample relies on having two negative terms that multiply
together to give a large positive term. If we restrict A and B to be subsets of the
positive real line, (0, ∞), then the result sup M = sup A · sup B would hold, and
could be proved following similar logic to the previous exercise.

4. (a) By dividing through by n, we obtain

(
3n

n + 3

)2

=

(
3

1 + 3
n

)2

and since 1
n → 0 as n → ∞, we see that(

3n
n + 3

)2

→
(

3
1

)2

= 9.

(b) By making use of Example 1 in Section 1, we can write

1 + 2 + . . . + n
n2 =

n(n+1)/2

n2

=
n + 1

2n

=
1 + 1

n
2

→ 1/2

as n → ∞.
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(c) We first write

an − bn

an + bn =
1 −

(
b
a

)n

1 +
(

b
a

)n =
1 − cn

1 + cn

where c = b/a. Since a > b > 0, we know that 1 > c > 0. Thus cn → 0 as
n → ∞ by Theorem 9.7(b), and hence (an − bn)/(an + bn) → 1 as n → ∞.

(d) Although 2n rapidly becomes much bigger that n2, we must be careful to show
this rigorously. One method is to use the binomial theorem to expand for n ≥ 3
according to

2n = (1 + 1)n

= 1n + n · 1n−1 · 1 +
n(n − 1)

2
· 1n−2 · 12 +

n(n − 1)(n − 2)
6

· 1n−313 + . . .

and hence, by neglecting all but one term,

2n >
n(n − 1)(n − 2)

6
.

Now, for n ≥ 3, we know that (n − 1) > n
2 and (n − 2) > n

4 , and hence

2n >
n3

24
and therefore 2n > n3/24. Thus for n ≥ 3, 0 < n2/2n < 24/n, and thus
n2/2n → 0 as n → ∞ by the Squeezing Lemma.

(e) This can be carried out by introducing a factor that completes the square:

√
n + 1 −

√
n =

(√
n + 1 −

√
n
) √

n + 1 +
√

n√
n + 1 +

√
n

=
(
√

n + 1 −
√

n)(
√

n + 1 +
√

n)√
n + 1 +

√
n

=
(n + 1)− n√
n + 1 +

√
n

=
1√

n + 1 +
√

n
.

Since
√

n → ∞ as n → ∞, we must have
√

n + 1 −
√

n → 0 as n → ∞.

5. (a) Let sn =
√

2
n for all n ∈ N. We know that sn is irrational, since if sn = p/q

for some integers p and q, then
√

2 = p/(qn), but
√

2 has been shown to be
irrational. Now consider an ϵ > 0. We see that

|sn − 0| =
√

2
n

and thus if n >
√

2ϵ, then |sn − 0| < ϵ. Hence sn → 0 as n → ∞.
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(b) There are many ways this could be achieved, such as defining sn as the first
digits of π, so that the first few terms would be 3, 3.1, 3.14, 3.141, 3.1415, 3.14159.
However, here a method is presented which shows explicitly how to construct
all the numbers in a sequence, and show that they converge to a irrational.
Define sn = pn/qn and put p1 = 1 and q1 = 1. Now, define the rest of the
sequence recursively by putting

pn+1 = pn + 2qn, qn+1 = pn + qn.

It is straightforward to see that if pn > 0 and qn > 0, then pn+1 > 0 and
qn+1 > 0, so by mathematical induction sn > 0 and qn ̸= 0 for all n. The first
few terms are

1
1

,
3
2

,
7
5

,
17
12

,
41
29

,
99
70

,
239
169

,
577
408

.

The last of these is 1.4142156862 . . . which differs from
√

2 by 2.12× 10−6. Here,
we prove that sn does indeed converge to

√
2. Suppose that sn differs from

√
2

by an amount ∆n, so that
pn

qn
−
√

2 = ∆n. (1)

Then consider how much sn+1 differs from
√

2:

∆n+1 =
pn+1

qn+1
−
√

2

=
pn + 2qn

pn + qn
−
√

2

=

pn
qn

+ 2
pn
qn

+ 1
−
√

2

=
∆n +

√
2 + 2

∆n +
√

2 + 1
−
√

2

=
∆n +

√
2 + 2 −

√
2(∆n +

√
2 + 1)

∆n +
√

2 + 1

=
(1 −

√
2)∆n

∆n +
√

2 + 1
.

Since pn/qn is positive, we know from Eq. 1 that ∆n +
√

2 > 0. We also know
that 1 <

√
2 < 3/2 since 12 = 1 < 2 and (3/2)2 = 9/4 > 2. Hence −1/2 <
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1 −
√

2 < 0. Using these inequalities,

|∆n+1| = |∆n| ·
∣∣∣∣∣ 1 −

√
2

∆n +
√

2 + 1

∣∣∣∣∣
≤ |∆n| ·

∣∣∣∣1/2

1

∣∣∣∣
≤ |∆n|

2
.

Hence by mathematical induction, |∆n| ≤ |∆1|(1/2)n−1, and thus by Theo-
rem 9.7(b), |∆n| → 0 as n → ∞. Hence Eq. 1 shows that sn = pn/qn →

√
2

as n → ∞.

6. We can rewrite a term in the sequence as a product of fractions,

sn =

(
1
n

)(
2
n

)
. . .
(n

n

)
.

Each of these fractions is less than or equal to one, and the first is equal to 1
n . Thus

sn ≤ 1
n . Now choose ϵ > 0. We see that

|sn − 0| = sn ≤ 1
n

and thus we see that for all n > ϵ−1, |sn − 0| < ϵ. Hence limn→∞ sn = 0.

7. An arbitrary polynomial can be written as a sum

p(x) =
k

∑
j=0

ajxj

where aj ∈ R and ak ̸= 0. To begin, we show by induction that if sn → s as n → 0,
then (sn)j → sj for all j ∈ N ∪ {0}. Consider the base case when j = 0. Since
(sn)0 = 1 for all n, this is a constant sequence, and thus converges to 1, which is
equal to s0.

Now assume the result is true for j and consider the case for j + 1. We can define
(sn)j+1 = (sn)j · sn and thus by Theorem 9.4. we know that (sn)j · sn → sj · s = sj+1 as
n → ∞. Hence the induction step holds, and by mathematical induction (sn)j → sj

for all j ∈ N ∪ {0}.

Now, if aj is a constant, then we know that aj(sn)j → ajsj by Theorem 9.2. Finally,
by applying Theorem 9.3, we see that p(sn) → p(s) as n → ∞.
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8. We begin by proving that sn = f (n) which is defined according to

f (n) = 2 − (2 − t)21−n.

Consider the case when n = 1:

f (1) = 2 − (2 − t)21−1 = 2 − (2 − t) = t

and thus s1 = f (1). Now assume that the result is true for n and consider the case
for n + 1:

sn+1 = 1 +
sn

2

= 1 + 1 − (2 − t)21−n

2
= 2 − (2 − t)21−(n+1).

and thus sn+1 = f (n + 1). Hence by mathematical induction, sn = f (n) for all
n ∈ N.

Now, by Theorem 9.7(b), we know that an → 0 if |a| < 1. Hence, by using Theo-
rems 9.2 and 9.3 about the scaling and addition of sequences we know that sn →
2 − (2 − t) · 0 = 2.
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