Math 104: Homework 11 solutions

1. (a) If x <0, then
X
F(x):/ 0dt = 0.
0
If0 < x <1, then
x p x2
F(x)—/o tdr ="

If x > 1, then

X 1 X 1
F(x)z/ tdt:/ tdt—l—/ 4dt = = +4(x — 1),
0 0 1 2

(b) The function is plotted in Fig. [Il The function is continuous, which follows
from the second Fundamental Theorem of Calculus.

(c) Atx =0,
_ 2
lim FO—F@) @y
a—0+ 0—a a—0t+ 4
and - .
im TOZF@ oy 0
a—0- 0—a a—0-0—a
Since the positive and negative limits agree, the function is differentiable at 0.
Atx =1,
im T =F@ o 4a=l)
a—1+ 1—a a1t a—1
and
_ 1_2
lim —P(l) F(a) = lim 2—2
a—1- 1—a a=1- 1—a
1—a)(1
= lim (1=a) —Hl)zl.

a—1— 2(1 — a)

Since the two limits do not agree, F is not differentiable at this point. Thus F’ is
defined on R/{1} and

0 for x <0,
F(x)=4{ x for0<x <1,
4 for x > 1.

These results are consistent with the second Fundamental Theorem of Calcu-
lus, which states that if f is continuous at a point xy, then F is differentiable at
that point and F/(xo) = f(xp).
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Figure 1: A graph of the function F(x) = [; f(t)dt used in question 1.




2. Let f(x) be a continuous real-valued function on [a, b]. Suppose that | ab f(x)g(x)dx =
0 for all continuous functions g, but that f(x) is not constant. Then there exists an
Xo € [a,b] such that f(xg) # 0. Assume that f(xy) > 0. Since f is continuous, there
exists a § > 0 such that |x — xg| < J implies that

£(x) — fx0)] < L0

and hence that

flx) > L0

Thus there exists an open interval (c,d) C [a,b] in which f is greater than f(x).
Consider
o},

. [d—c c+d
g(x) = mm{ 5 +x— > ,O}

= min{x —¢,0} =0.

(x) = mi d—c_x_c+d
g(x) = min 5 >

Then if x < ¢,

Similarly, ¢(x) = 0if x > d. Now

b (e+d)/2 (d — ¢ c+d d d—c c+d
/ug(x)dx = /C ( 5 +x— > )dx+/(c+d)/2< 5 —x+ 5 )dx

(c+d)/2 d
= / (x —c)dx + / (d— x)dx
c (c+d)/2

_ (d_c)2>0

4
However, f(x)g(x) > f(x0)g(x)/2 for all x € [a,b], and hence

[ rgtoie = 10 [ e = FEI 2R

If f(xp) < 0, then the same argument can be applied to —f to show that [ ab fg <O.

Hence there exists a g such that | ab fg # 0, which is a contradiction. Thus f(x) =0
for all x € [a, b].

3. (a) Choose a € (a,b). Then

[5= [re]r

— lim /Caerlim /adf (1)

c—at d—b—



and similarly

b « d
= lim / + lim / . 2
/a & c—at Je § d—b~ Ja 8 @)
If [ ub g < oo, then both of the terms in the above expression must be finite.
Consider the two terms integrated over the range from c to a. Since 0 < f(x) <

Thus the integral of f is bounded above, and hence

o 14
lim / f< / g < oo
c—at Je a
The same logic can be applied to the term from « to d. Hence | ab f < oo.

(b) If fab f = oo, then at least one of the terms in Eq. [1|is equal to oo; suppose it is
the first. Then for all M > 0 there exists E such that a < ¢ < E implies

/C“f>M.

14 4
[s=[rom
C C

and thus lim, _,,+ ¢ = co. Hence from Eq.[2} | ab g = 0. The same logic could be
applied if the second term in Eq. [1|is infinite, and thus the result is true for all
cases.

Hence

4. Consider the sequence of functions

! if |x| <n

— on
fulx) { 0 if |x| > n.
Then

c—00

/_O:ofn(x) = lim /chn(x)dx+dlimm dofn(X)dx.

Ifc >nandd < —n, then

/chn(x)dx:n-%:%, /Ofn(x)dx:rr%:

and thus



To show that f, — 0 uniformly, consider any € > 0. Then there exists and N such
that%] < €. Forn> N,and x € R

1 1
2n

fulx) — 0] < \——o

and thus f, — 0 uniformly.

5. (a)

(b)

The tangent can be defined for (—7, 7) in terms of sine and cosine as

sin x

tanx = .
CcoS X

Since cosx > 0 for x € (—7%,%), and sine and cosine are differentiable, the

quotient theorem can be applied to show that

cos x sin’ x — sin x cos’ x

cos? x

cos? x + sin? x

tan' x =

cos? x
1

cosZx’

Hencetan’ x > Oforall x € (—%, %), so tan x is strictly increasing. Asx — 77/2,
cosx — 0 and sinx — /2. Consider any M > 0. Then there exists a §; > 0
such that 7 — 61 < x < 7 implies that

1
0 —.
< cosx < M

Similarly, there exists a 6, > 0 such that for 7 — 6, <x < 7,
) 1
0 <sinx < >

Hence if 6 = min{d1,0,}, then 7 — 6 < x < Z implies that tanx > 2M = M.
Hence lim,_, ; /, tan x = co. Since sine is an odd function and cosine is an even
function, then the tangent must be an odd function, so lim,_,_,/, tanx = —oo.
Hence tan x is not bounded above or below.

By the previous results, tan is a one-to-one differentiable function from (-7, J)

to R. Hence by the inverse function theorem, there exists a function tan~! :
R — (—%, %) which is differentiable and satisfies

tan" ! (tany) = y.
By applying the chain rule,

(tan"!)(tany) tan’y = 1



()

(d)

(e)

(a)

and thus if x = tany,
(tan1)(x) = cos?y.

By making use of the trigonometric identity cos?y + sin?y = 1,

2 1 1
(tan 1) (x) = — = =
cos?y+siny l+tan‘y 1+4+x
Let
B 00 (_1)nx2n+1
f6) = L 5

The radius of convergence is R = 1, and thus the series converges for |x| < 1.
Since power series can be differentiated,
d 1
n X2 = a2\
Y

Thus over the range (—1,1), f’(x) = (tan~1)’(x), and by Corollary 29.5 f(x) =
tan~1(x) + C for some C € R. Since f(0) = tan"'(0) = 0, it follows that
f(x) = tan"!(x) for x € (—1,1).

By the inverse function theorem tan~! is continuous on the range (—%, Z). At
x =1,
_ v (D
f6) = Y5

n=0
which converges by the alternating series theorem. Abel’s theorem states that
if a power series f converges at x = R, then f is continuous at x = R. Since
f(x) = tan~1(x) for |x| < R, it follows that

= (1) o m
oy = /(1) = lim £ = limtan ! x = an (1) = 7.

By direct calculation (5 + i)*(239 — i) = 114244 + 114244i. When complex
numbers are multiplied, their arguments are additive, and hence

darg(5+1i) + arg(239 — i) = arg(114244 + 114244i).
SO

1 1 11 7T
-1+ 1
4 tan 5 tan— 239 1 1

7w/2
Io :/ 1dx =
0

Ip is given by

N[

and I is given by

/2 /2
11:/ sinxdx = [—cosx]j’*=0—(-1) =1.
0



(b) By using integration by parts,
/2
Liso = / sin "2 x dx
0
/2
= / sin x(sin" ™! x) dx
0
1 /2 /2
= [cos x sin”* x] , T / (n+1) cos x(sin” x cos x) dx
0

/2

— 0+(n+1)/ sin” x(1 — sin? x) dx
0

= (n+1)(In+ Ins2)

from which it follows that (n +2)I,42 = (n +1)I,.

(c) Since sin?*lx < sin?" x for all x € [0,71/2], it follows that Ly, 1 < L.
Similarly, by using the previously derived identity,

2m—+1 1
< J— .
IZm >~ IZm—l - 12m+1 7 - (1 _2 ) 12m+1

(d) By repeated application of the identity (n +2)I,12 = (n +1)I,,

T
= = ]
5 0

(3)

and

357 2m+1

= 246 om D1 (4)

By using the inequalities in the previous section,

1<t o L
D1 2m




Since ﬁ — 1, the squeezing lemma can be applied to show that

. IZm
lim
m—reo Ipy 41

By dividing Eq.[8|by Eq.[4] it can be shown that

=1

T 224466 2m 2m Dy

2 133557 " 2m—12m+11Ip,4q

and hence
T 224466 2m 2m

QIIA 133557 " "2m—12m+1°

2m+1

Now take limits on both sides. By sequence limit theorems, the left hand side
must converge to 71/2, and hence the right hand side must converge to the
same limit also. Hence

T 224466 2m 2m

A fim 222222 .
2 mhe133557 2m—12m+1




