
Math 104: Homework 10 solutions

1. (a) The first derivative is

f ′(x) =
1

x + 1
and the nth derivative is given by

f (n) =
(n − 1)!(−1)n−1

(x + 1)n .

Hence the Taylor series expansion at x = 0 is given by

f (x) =
n−1

∑
k=0

f (k)(0)
n!

+ Rn(x)

=
n−1

∑
k=1

(n − 1)!
n!

(−1)n−1 + Rn(x)

=
n−1

∑
k=1

(−1)n−1

n
+ Rn(x).

(b) By using Taylor’s Theorem, the remainder is given by

Rn(x) =
f (n)(y)

n!
xn =

(−1)n−1

n(y + 1)n xn =
(−1)n−1

n

(
x

1 + y

)n

where y is between 0 and x. If 0 < x < 1, then y > 0, so 0 < x/(1 + y) < x
and hence Rn(x) → 0 as n → 0. If −1/2 < x < 0, then 1 + y > 1/2, so
x/(1+ y) < (1/2)2 = 1 and hence Rn(x) → 0 as n → 0. Hence the Taylor series
agrees with f in the range −1/2 < x < 1.

2. Suppose that there exists a y ∈ [a, b] such that f (y) > 0. Suppose y = a; then since f
is continuous, there exists a δ > 0 such that |x − a| < δ implies that | f (a)− f (x)| <
f (a)/2, in which case f (a + δ/2) > 0. Similarly, if y = b, then there exists a δ > 0
such that f (b − δ/2) > 0. Hence there must exist an x0 ∈ (a, b) such that f (x0) > 0.
Since f is continuous, there exists a δ > 0 such that |x − x0| < δ implies that

| f (x)− f (x0)| <
f (x0)

2

and hence

f (x) >
f (x0)

2
. (1)



Since x0 ∈ (a, b) it is always possible to find a δ > 0 to that (x0 − δ, x0 + δ) ⊂ [a, b].
Consider the partition P = {a = t0 < t1 < t2 < t3 = b} where t1 = x0 − δ

2 and
t2 = x0 − δ

2 . Then

L( f , P) =
3

∑
k=1

(tk − tk−1)m( f , [tk−1, tk])

Since f (x) ≥ 0 for all x ∈ [a, b], then m( f , [a, t1]) ≥ 0 and m( f , [t2, b]) ≥ 0. In
addition, by reference to Eq. 1, m( f , [t1, t2]) ≥ f (x0)/2, and hence

L( f , P) ≥ 0 +
(

x0 +
δ

2
− x0 +

δ

2

)
f (x0)

2
+ 0 =

δx0

2
> 0.

Hence
∫ b

a f > 0, which is a contradiction. Hence, f (x) = 0 for all x ∈ [a, b].

3. Consider the function

f (x) =
{

1 if x ∈ Q

−1 if x /∈ Q

defined on [0, 1]. Then f (x)2 = 1 for all x ∈ [0, 1], and this function is integrable.

Consider any partition P = {0 = t0 < t1 < . . . < tn = 1}. Then m( f , [tk−1, tk]) = −1
for k = 1, . . . , n since any interval of finite length must contain an irrational number.
Similarly, M( f , [tk−1, tk]) = 1 for k = 1, . . . , n since any interval of finite length must
also contain a rational number. Thus

L( f , P) =
n

∑
k=1

m( f , [tk−1, tk])(tk − tk−1) = −
n

∑
k=1

(tk − tk−1) = −(1 − 0) = −1

and

U( f , P) =
n

∑
k=1

M( f , [tk−1, tk])(tk − tk−1) =
n

∑
k=1

(tk − tk−1) = 1 − 0 = 1.

Since this is true for any partition, it follows that U( f ) = 1, and L( f ) = −1, so f is
not integrable.

4. (a) Let f be a bounded function on [a, b], so that there exists a B > 0 such that
| f (x)| ≤ B for all x ∈ [a, b]. Recall the result from Ross Exercise 4.14, that for
two sets A and B, then the set C of sums a + b where a ∈ A and b ∈ B satisfies

sup C = sup A + sup B.

For any interval I ⊆ [a, b],

M( f 2, I)− m( f 2, I) = sup{ f (x)2 : x ∈ I} − inf{ f (x)2 : x ∈ I}
= sup{ f (x)2 : x ∈ I}+ sup{− f (x)2 : x ∈ I}
= sup{ f (x)2 − f (y)2 : x ∈ I, y ∈ I}
= sup{( f (x)− f (y))( f (x) + f (y)) : x ∈ I, y ∈ I}
≤ 2B sup{ f (x)− f (y) : x ∈ I, y ∈ I}
= 2B(sup{ f (x) : x ∈ I} − inf{ f (x) : x ∈ I}).



Now consider any partition P = {a = t0 < t1 < . . . < tn = b}. Then

U( f 2, P)− L( f 2, P) =
n

∑
k=1

(tk − tk−1)(M( f 2, [tk−1, tk])− m( f 2, [tk−1, tk]))

≤ 2B
n

∑
k=1

(tk − tk−1)(M( f , [tk−1, tk])− m( f , [tk−1, tk]))

= 2B[U( f , P)− L( f , P)].

(b) If f is integrable, then for all ϵ > 0 there exists a partition P such that

U( f , P)− L( f , P) <
ϵ

2B
.

Thus by using the above inequality,

U( f 2, P)− L( f 2, P) ≤ 2B(U( f , P)− L( f , P)) < ϵ

and hence f 2 is integrable.

5. (a) Since f and g is integrable, then f + g and f − g are integrable by Theorem 33.3.
The result from the previous question shows that ( f + g)2 and ( f − g)2 are
integrable also. Applying Theorem 33.3 again shows that

f g =
( f + g)2 − ( f − g)2

4

is integrable.

(b) By Theorem 33.5, | f − g| is integrable, and thus by Theorem 33.3,

max( f , g) =
1
2
( f + g)− 1

2
| f − g|

is integrable. Since − f , and −g are integrable,

min( f , g) = −max(− f ,−g)

is integrable also.

6. (a) For any two numbers u, v ∈ R,

(u + v)2 ≥ 0

so
u2 + 2uv + v2 ≥ 0



and hence uv ≤ (u2 + v2)/2. Consider two integrable functions f and g on
[a, b], where

∫ b
a f 2 =

∫ b
a g2 = 1. Then by Exercise 33.8, f g is integrable. Since

f (x)g(x) ≤ ( f (x)2 + g(x)2)/2, Theorem 33.4 shows that∫ b

a
f g ≤

∫ b

a

f 2 + g2

2

and hence ∫ b

a
f g ≤

(∫ b

a

f 2

2

)
+

(∫ b

a

g2

2

)
=

1
2
+

1
2
= 1.

(b) Consider two integrable functions f and g on [a, b]. Define C =
∫ b

a f 2 and

D =
∫ b

a g2. Suppose initially that both C > 0 and D > 0, then define F(x) =

f (x)/
√

C and G(x) = g(x)/
√

D for x ∈ [a, b]. Hence∫ b

a
F2 =

∫ b

a

f 2

C
=

1
C

∫ b

a
f 2 = 1

and similarly
∫ b

a G2 = 1, so the inequality of the previous section can be applied
to show that ∫ b

a
FG ≤ 1.

Thus ∫ b

a

f g
CD

≤ 1

so ∫ b

a
f g ≤ CD =

(∫ b

a
f 2
)1/2 (∫ b

a
g2
)1/2

.

Since the same inequality would hold if applied to − f and g, it follows that∣∣∣∣∫ b

a
f g
∣∣∣∣ ≤ (∫ b

a
f 2
)1/2 (∫ b

a
g2
)1/2

.

Now consider the case when C = 0 or D = 0. If f and g are continuous, then
the result follows quickly from question 3. If C = 0, then f (x)2 = 0 for all
x ∈ [a, b], and hence f (x) = 0 for all x ∈ [a, b], in which case the Schwarz
inequality is satisfied. Similarly, if D = 0, then g(x) = 0 for all x ∈ [a, b], and
the Schwarz inequality is satisfied.
However, if f and g are not assumed to be continuous, the result requires a
more direct approach. Suppose C = 0 and D ̸= 0, and consider any ϵ > 0.
Then there exists a partition P such that

U( f 2, P)− L( f 2, P) < ϵ.



It is known that L( f 2, P) ≥ 0 since f (x)2 ≥ 0 for all x. Since L( f 2, P) ≤
∫ b

a f 2 =

0, it follows that L( f 2, P) = 0. If U( f 2, P) = 0, then that implies that f (x) = 0
for all x ∈ [a, b], and hence the Schwarz inequality is satisfied. Otherwise,
consider the step function

hP(x) =
{

M(| f |, [tk−1, tk]) for x ∈ [tk−1, tk),
M(| f |, [tn−1, b]) for x = b.

By construction, ∫ b

a
h2

P = U( f 2, P).

and since U( f 2, P) > 0, the Schwarz inequality can be applied to hP and g, to
show that ∣∣∣∣∫ b

a
f g
∣∣∣∣ ≤

∫ b

a
| f g|

≤
∫ b

a
|hPg|

≤
(∫ b

a
h2

P

)1/2 (∫ b

a
g2
)1/2

=
(

U( f 2, P)
)1/2

D

< D
√

ϵ.

Since this is true for arbitrary ϵ > 0, it follows that |
∫ b

a f g| = 0, and thus the
Schwarz inequality is satisfied. The same argument can then be repeated to
show that the result also holds for D = 0. Hence the Schwarz inequality is
satisfied for all functions.

(c) Consider the three properties of a metric:

M1. Consider f ∈ X. Then

d( f , f ) =
(∫ b

a
| f − f |2

)1/2

=

(∫ b

a
0
)1/2

= 0.

Suppose f , g ∈ X and d( f , g) = 0. Then

0 =
∫ b

a
| f − g|2

and by the result from question 3, since | f − g|2 is continuous, it follows
that | f (x)− g(x)|2 = 0 for all x ∈ [a, b]. Hence f (x) = g(x) for all x ∈ [a, b].
Thus d( f , g) = 0 if and only if f = g.



M2. For any two f , g ∈ X,

d( f , g) =
(∫ b

a
| f − g|2

)1/2

=

(∫ b

a
|g − f |2

)1/2

= d(g, f )

so d is symmetric.
M3. Consider f , g, h ∈ X. If d( f , h) = 0, then the inequality d( f , h) ≤ d( f , g) +

d(g, h) is immediately satisfied. Otherwise consider

d( f , h)(d( f , g) + d(g, h)) =

(∫ b

a
| f − g|2

)1/2 (∫ b

a
| f − h|2

)1/2

+

(∫ b

a
|g − h|2

)1/2 (∫ b

a
| f − h|2

)1/2

≥
∣∣∣∣∫ b

a
| f − g| · | f − h|

∣∣∣∣+ ∣∣∣∣∫ b

a
|g − h| · | f − h|

∣∣∣∣
=

∫ b

a
| f − g| · | f − h|+

∫ b

a
|g − h| · | f − h|

=
∫ b

a
(| f − g|+ |g − h|) · | f − h|.

The usual triangle inequality can be applied to show that

d( f , h)(d( f , g) + d(g, h)) ≥
∫ b

a
| f − h| · | f − h| = d( f , h)2

and hence, since d( f , h) > 0,

d( f , g) + d(g, h) ≥ d( f , h)

so the triangle inequality is satisfied.

Hence d is a metric.


