Math 104: Homework 10 solutions

1. (a) The first derivative is
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and the nth derivative is given by
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Hence the Taylor series expansion at x = 0 is given by
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(b) By using Taylor’s Theorem, the remainder is given by
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where y is between 0 and x. If 0 < x < 1,theny > 0,500 < x/(1+y) < x
and hence R,(x) — O0Oasn — 0. If —=1/2 < x < 0, then1+y > 1/2, so
x/(14+y) < (1/2)2 = 1 and hence R, (x) — 0as n — 0. Hence the Taylor series
agrees with f in the range —1/2 < x < 1.

2. Suppose that there exists a y € [a, b] such that f(y) > 0. Suppose y = a; then since f
is continuous, there exists a ¢ > 0 such that |x — a| < ¢ implies that |f(a) — f(x)| <
f(a)/2, in which case f(a + 6/2) > 0. Similarly, if y = b, then there exists a 6 > 0
such that f(b —6/2) > 0. Hence there must exist an xy € (a,b) such that f(xy) > 0.
Since f is continuous, there exists a 6 > 0 such that |x — xo| < J implies that

£() — f)] < L5

and hence

flw > 152 )



4.

Since xy € (a,b) it is always possible to find a § > 0 to that (xo — J,x0 +J) C [a,b].
Consider the partition P = {a = t) < t; < tp < t3 = b} where t; = x¢ — % and
thy = xg — g Then
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Since f(x) > 0 for all x € [a,b], then m(f,[a,t1]) > 0 and m(f,[t2,b]) > 0. In
addition, by reference to Eq.[l} m(f, [t1, t2]) > f(x0)/2, and hence
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L(f,P)EO—}—(XQ-Fé—xO—Fé)f( o) =—>0.
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Hence | ab f > 0, which is a contradiction. Hence, f(x) = 0 for all x € [a, ]].

. Consider the function

! ifxeQ
f(x)—{—1 ifx¢Q
defined on [0, 1]. Then f(x)? = 1 for all x € [0,1], and this function is integrable.
Consider any partitionP = {0 =ty < t; < ... < t, = 1}. Thenm(f, [tx_1, t]) = —1
fork =1,...,n since any interval of finite length must contain an irrational number.

Similarly, M(f, [tx_1,tx]) = 1fork =1,...,n since any interval of finite length must
also contain a rational number. Thus

P) = - m(f, s, ) (b — tin) = zuk—tkl ~1-0)=-1
k=1

and
n
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Since this is true for any partition, it follows that U(f) = 1, and L(f) = —1,s0 f is
not integrable.
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(a) Let f be a bounded function on [a,b], so that there exists a B > 0 such that
|f(x)] < Bforall x € [a,D]. Recall the result from Ross Exercise 4.14, that for
two sets A and B, then the set C of sums a + b wherea € A and b € B satisfies

sup C = sup A + sup B.
For any interval I C [a,b],

M(f2, 1) —m(f5,1) = sup{f(x)*: x €I} —inf{f(x)*> : x € I}
= sup{f(x)?: x € I} +sup{—f(x)* : x €I}
= sup{f(x)*~f(y)?:xeLyel}

f
sup{(f(x) = f(¥))(f(x) + f(y)) : xe Ly e}
2Bsup{f(x)—f(y) : xe Ly eI}
2B(sup{f(x) : x € I} —inf{f(x) : x € I}).
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Now consider any partition P = {a =ty < t; < ... < t, = b}. Then
U(f%,P) = L(f%,P) = Y (= beea) (M(f?, B, te]) — m(f2, b, t]))
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= 2B[U(f,P) = L(f, P)].

(b) If f is integrable, then for all € > 0 there exists a partition P such that

U(f,P) — L(f,P) < %.
Thus by using the above inequality,
U(f?, P) — L(f* P) < 2B(U(f,P) — L(f,P)) <e
and hence f2 is integrable.

(a) Since f and g is integrable, then f + ¢ and f — g are integrable by Theorem 33.3.
The result from the previous question shows that (f + ¢)? and (f — g)? are
integrable also. Applying Theorem 33.3 again shows that
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is integrable.
(b) By Theorem 33.5, | f — ¢| is integrable, and thus by Theorem 33.3,

1 1
max(f,g) = §(f+8) - §|f—8\
is integrable. Since — f, and —g are integrable,
min(f,g) = —max(—f, -g)
is integrable also.

(a) For any two numbers u,v € R,
(u+10v)>>0
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u? + 2uv + v? >0



(b)

and hence uv < (u? 4 v?)/2. Consider two integrable functions f and g on
a, b], where [ : A= : ¢?> = 1. Then by Exercise 33.8, fg is integrable. Since
f(x)g(x) < (f(x)?+ g(x)?) /2, Theorem 33.4 shows that
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Consider two integrable functions f and g on [a,b]. Define C = | ab f? and

D = f ab gz. Suppose initially that both C > 0 and D > 0, then define F (x) =
f(x)/+/Cand G(x) = g(x)/+/D for x € [a,b]. Hence

[re[E-tfre

and similarly fub G? = 1, so the inequality of the previous section can be applied
to show that

and hence
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Since the same inequality would hold if applied to — f and g, it follows that

/abfg‘ < (/ﬂbﬁ)m (/abf)

Now consider the case when C = 0 or D = 0. If f and g are continuous, then
the result follows quickly from question 3. If C = 0, then f(x)?> = 0 for all
x € [a,b], and hence f(x) = 0 for all x € [a,b], in which case the Schwarz
inequality is satisfied. Similarly, if D = 0, then g(x) = 0 for all x € [a,b], and
the Schwarz inequality is satisfied.
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However, if f and g are not assumed to be continuous, the result requires a
more direct approach. Suppose C = 0 and D # 0, and consider any € > 0.
Then there exists a partition P such that

U(f%P) —L(f%P) <e.



It is known that L(f2, P) > 0 since f(x)? > 0 for all x. Since L(f2, P) < fab 2=
0, it follows that L(f2, P) = 0. If U(f?, P) = 0, then that implies that f(x) = 0
for all x € [a,b], and hence the Schwarz inequality is satisfied. Otherwise,
consider the step function

MC(|f|, [tk—1,t for x € [t_1,1t1),
i = { Ml e

By construction,
b
/ 13 = U(f2,P).
a

and since U(f?, P) > 0, the Schwarz inequality can be applied to hp and g, to

show that
b b
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Since this is true for arbitrary € > 0, it follows that | | ab fg| = 0, and thus the
Schwarz inequality is satisfied. The same argument can then be repeated to
show that the result also holds for D = 0. Hence the Schwarz inequality is
satisfied for all functions.
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(c) Consider the three properties of a metric:
M1. Consider f € X. Then

arn=([1r-2) = ([0) =0

Suppose f,g € Xand d(f,g) = 0. Then

0= [If 3P

and by the result from question 3, since |f — ¢|? is continuous, it follows
that |f(x) — g(x)|> = Oforall x € [a,b]. Hence f(x) = g(x) forall x € [a, b].
Thus d(f,g) = 0ifand only if f = g.



M2. For any two f, g € X,

t.5) = ([ 1~ sP)

b 1/2
~([g-112) =digh)
so d is symmetric.

M3. Consider f,g,h € X. If d(f,h) = 0, then the inequality d(f,h) < d(f,g) +
d(g, h) is immediately satisfied. Otherwise consider

amasg vaem = ([1r-s8) ([ 1r-ne)
([ rsne) ([ )
> |1 sl b=+ [ lg =1l
= [l sl lfnl [l h 1
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The usual triangle inequality can be applied to show that

AF )@, 9) (g ) = [ 1F - 1f = d(f,
and hence, since d(f,h) > 0,

d(f,g) +d(g h) >d(f,h)

so the triangle inequality is satisfied.

Hence d is a metric.



