
Math 104: Homework 1 solutions

1. The basis for induction, P1, is true, since 13 = 12. Now consider the induction step,
assuming Pn is true and examining Pn+1. By making use of the result (1 + 2 + . . . +
n) = n(n + 1)/2 that is given as an example result in Section 1, we see that

13 + 23 + . . . n3 + (n + 1)3 = (13 + 23 + . . . n3) + (n + 1)3

= (1 + 2 + . . . + n)2 + (n + 1)3

=

(
n(n + 1)

2

)2

+ (n + 1)3

=
n2(n + 1)2

4
+ (n + 1)3

=
(n + 1)2

4

(
n2 + 4n + 4

)
=

(n + 1)2(n + 2)2

4
= (1 + 2 + . . . + n + (n + 1))2,

and thus Pn+1 is satisfied. Hence, by the principle of mathematical induction, Pn is
true for all n ∈ N.

2. (a) For this exercise, P2 is treated as the basis for induction. We see that 22 = 4 >
2 + 1 = 3, so P2 is true. Now consider the induction step, assuming Pn is true
and examining Pn+1:

(n + 1)2 = n2 + 2n + 1 > (n + 1) + 2n + 1 > (n + 1) + 1.

Hence if Pn holds then Pn+1 holds. By the principle of mathematical induction,
Pn is true for all n ∈ N with n ≥ 2.

(b) Here, P4 is treated as the basis for induction. We see that 4! = 24 > 42 = 16 so
P4 is true. Now consider the induction step, assuming Pn is true and examining
Pn+1:

(n + 1)! = n!(n + 1) > n2(n + 1).

Now, apply the result from (a), which is true for n > 2 and thus valid for all
cases under consideration:

(n + 1)! = n2(n + 1) > (n + 1)(n + 1) = (n + 1)2.

Hence if Pn holds then Pn+1 holds. By the principle of mathematical induction,
Pn is true for all n ∈ N with n ≥ 4.

3. (a) The golden ratio satisfies the relation

φ2 =
(1 +

√
5)2

4
=

6 + 2
√

5
4

= 1 +
1 +

√
5

2
= 1 + φ.
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(b) First consider the induction hypothesis H1:

f (0) =
φ0 − (1 − φ)0

√
5

= 0, f (1) =
φ − (1 − φ)√

5
=

2φ − 1√
5

= 1,

and hence H1 is true. Now consider the induction step. Suppose Hn is true,
and consider Hn+1. Then Fn = f (n) and

Fn+1 = Fn + Fn−1

=
φn − (1 − φ)n + φn−1 − (1 − φ)n−1

√
5

=
φn−1(1 + φ)− (1 − φ)n−1(1 + (1 − φ))√

5

=
φn−1(φ2)− (1 − φ)n−1(2 − φ))√

5
.

Since (1 − φ)2 = 1 − 2φ + φ2 = 1 − 2φ + (1 + φ) = 2 − φ, it follows that

Fn+1 =
φn−1φ2 − (1 − φ)n−1(1 − φ)2

√
5

=
φn+1 − (1 − φ)n+1

√
5

= f (n + 1)

so Hn+1 is true. Hence by mathematical induction Hn is true for all n, so Fn =
f (n) for all n ∈ N ∪ {0}.

4. To begin, search for a polynomial that is satisfied by x = (5 −
√

3)1/3:

x3 = 5 −
√

3
x3 − 5 = −

√
3

(x3 − 5)2 = 3
x6 − 10x3 + 22 = 0.

Now suppose that x is rational, so that it can be written as x = p/q where p, q ∈ Z

and q ̸= 0 with p and q coprime. Then by the rational zeroes theorem, p divides 22
and q divides 1. Hence the only possible solutions are ±1, ±2, ±11, and ±22. The
table below shows that none of these values satisfy the equation.

x 1 2 11 22
x6 − 10x3 + 22 13 6 1,758,273 113,273,446

(−x)6 − 10(−x)3 + 22 33 166 1,784,893 113,486,406
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5. To begin, we find a polynomial that is satisfied by x =
√

2 +
√

3:

x2 = (
√

2 +
√

3)2

x2 = 5 + 2
√

2
√

3
(x2 − 5) = 2

√
2
√

3
(x2 − 5)2 = 24

x4 − 10x2 + 25 = 24
x4 − 10x2 + 1 = 0.

By the application of the rational zeroes theorem, if x = p/q with p and q coprime,
then p divides 1 and q divides 1. Hence the only possible rational solutions to this
polynomial are ±1. However

(1)4 − 10(1)2 + 1 = −8 ̸= 0
(−1)4 − 10(−1)2 + 1 = −8 ̸= 0

and since neither possibility satisfies the equation,
√

2 +
√

3 is irrational.

6. (a) For a, b, c ∈ N, associativity (A1) and commutativity (A2) hold, so that (a +
b) + c = a + (b + c), and a + b = b + a. A3 is violated, since N does not
contain the additive identity element 0. A4 is violated, since for all a ∈ N,
−a /∈ N. Multiplication is also associative and commutative so M1 and M2
hold. The multiplicative inverse 1 is in N so M3 holds. M4 does not hold since
all elements other than 1 do not have multiplicative inverses.
The DL property is satisfied. Likewise, since N is a subset of R, all of the
ordering axioms O1–O5 are immediately satisfied.

(b) Many of the same arguments can be made for Z. The only change is that the
set contains the additive identity and the additive inverses, so that A3 and A4
are satisfied. M4 still remains invalid.

7. We start by considering the statement 0 < 1. Suppose that this was untrue, so that
1 ≤ 0. Then by applying axiom O4, we know that

1 + (−1) ≤ 0 + (−1)
0 ≤ −1

Now, apply axiom O5, using a = 0, b = −1, and c = −1 to show that 0 ≤ (−1) ·
(−1). Then by making use of Theorem 3.1(iv), we know that

0 ≤ 1 · 1 = 1

But now 0 ≤ 1 and 0 ≥ 1, so by axiom O2, 0 = 1. Since zero and one are distinct
elements, this is a contradiction, and thus 0 < 1.
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Why is 0 ̸= 1? In the textbook’s treatment, the rational numbers Q are assumed to
exist and then the axioms A1–A4, M1–M4, and DL are subsequently introduced to
create the field structure. If the numbers 0 and 1 are constructed a priori as elements
of Q then it is safe to assume that they are distinct objects. In other presentations
of the field axioms, which describe them in the abstract and not in relation to an
already given set, it is assumed that the additive and multiplicative inverses are
unique, which would immediately disallow 0 = 1. Regardless, it is clear that 0 = 1
leads to catastrophic problems: using Theorem 3.1(i), we would see that for any
element a,

a = a · 1 = a · 0 = 0

implying that all elements are zero.

We now wish to show that for all non-zero a, b ∈ R, 0 < a < b implies 0 < b−1 <
a−1. By the transitivity axiom O3, we know that 0 ≤ a and a ≤ b implies that 0 ≤ b,
and since b is non-zero, 0 < b. Thus by Theorem 3.2(vi), 0 < b−1.

Now suppose that b−1 ≥ a−1. Since b > 0, axiom O5 can be applied to show that

b · b−1 ≥ b · a−1

1 ≥ b · a−1,

and since a > 0, axiom O5 can be applied to show that

a · 1 ≥ a · b · a−1

a ≥ b.

This is a contradiction, and hence b−1 < a−1. Thus 0 < b−1 < a−1.

8. (a) First suppose that −a ≤ b ≤ a. Then either |b| = b in which case |b| ≤ a, or
|b| = −b in which case −|b| ≥ −a and thus |b| ≤ a. Thus, |b| ≤ a in all cases.
Now suppose that |b| ≤ a. Since |b| ≥ 0 for all b, it follows that a ≥ 0 by
transitivity. If b ≥ 0, then |b| = b and hence b ≤ a. In addition b ≥ 0 ≥ −a, and
hence −a ≤ b ≤ a. If b ≤ 0, then |b| = −b, and hence −b ≤ a, so −a ≤ b. In
addition, b ≤ 0 ≤ a, and thus b ≤ a also. Thus −a ≤ b ≤ a in all cases.

(b) The triangle inequality states that for all c, d ∈ R,

|c|+ |d| ≤ |c + d|.

For any two numbers a, b ∈ R, substituting c = a− b and d = b into the triangle
inequality gives

|a − b|+ |b| ≥ |a − b + b|
|a − b| ≥ |a| − |b|.
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Similarly, a substitution of c = a and d = b − a gives

|a|+ |b − a| ≥ |a + b − a|
|b − a| ≥ |b| − |a|.

Applying Theorem 3.2(i) to this expression gives −|b − a| ≤ |a| − |b|. Also,
|b − a| = |a − b|, and hence

−|a − b| ≤ |a| − |b| ≤ |a − b|. (1)

By using the result from part (a), it follows that

||a| − |b|| ≤ |a − b|.
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