Math 104: Solutions to sample final problems
1. For the first series
B = limsup |a,|'/" = limsup |n|>/" =1
so the radius of convergence is R = 1/p = 1. At n = 1, the series is
y L
it
which converges (and can be verified using the integral test). At n = —1, the series

; (—13-)”

n

which converges by the alternating series test. Hence the exact interval of conver-
gence is [—1, 1]. For the second series, only every third term is non-zero, and thus

1/3n

1
=1

B = limsup |a,|'/" = lim |a3,|'%" = lim 7

n—o00 n—oo

so the radius of convergence is 1. At x = 1, the series is
y L
n:lzn
which diverges. At x = —1, the series is
£
n=1 2n

which converges by the alternating series test. Hence the exact interval of conver-
gence is (—1, 1]. For the third series

B = limsup [ay|'/" = lim [azu['/>" = lim 1 =1

and hence the radius of convergenceis 1. Atx =1

(o) 00
ZXZn!:Zl
n=0 n=0

which diverges. Since the series is even, it diverges at x = —1 also. Hence the exact
interval of convergence is (—1,1).



2.

(a)

(b)

Suppose that s, — s. Then for all € > 0 there exists an N € IN such that for all
n> N,

|sn —s| < e.
To show that s% — 52, consider any € > 0. First, note that

|S% — 52| = sy —s|-|sn+s|

There exists an N7 € IN such that n > Nj implies that |s, — s| < 1, and hence
that
|sn +s] < [sn| +|s| < (Is| +1) +|s| =2|s] + 1.

Similarly, there exists an N, € IN such that n > N, implies that

s —s| < L
2|s|+1

Hence, if N = max{Ny, N}, then n > N implies
|57 —s°| < lsu—s|-[sn+s]

< (2ls|+1) =e.

2|s| +1

A function f is continuous at a point x if for all sequences (x,) such that
limy, ;00 X = x, then limy, o f(x,) = f(x). By part (a), forall x € R, if x,, — x,
then x2 — x2. Thus f is continuous for all x € R.

Alternatively, to use the e-d property, choose € > 0, and fix xg € R. Then

|F(x) = f(xo)| = |x* = x§| = [x — x| - |x + xol.
If [x — xo| <1, then |x + xo| < |x| + |x0] < 2|xg| + 1. Pick § = min{z‘xﬂeT,l}.

Then |x — xp| < 6 implies

|f(x) = f(x0)| < W

and hence f is continuous at x(. Since x is arbitrary, f is continuous on IR.

(2|xo| +1) =€

3. By the Mean Value Theorem, there exists a ¢ € (7, s) such that

6 —F0)

S—r

fle) =

and there exists and d € (s, t) such that

oy~ FO =56

t—s

By construction, d > ¢. Hence there exists an x € (¢,d) C (0,1) such that

piig = D=FO



4. (a) If Y57 a, converges to a limit a, then for all € > 0, there exists an N € IN such
that k > N implies

< €.

k
a— Y ay
n=0

Now consider any € > 0 and define N as above. If k > N /2, then

k

a—an

n=0

2k+1

a— 2 ay
n=0

< E.

Hence ) > b, converges.
(b) Suppose a, = (—1)". Then

% _{ 1 if Nis even,
b=

0 if Nisodd;
n=0

this series diverges. However b, = 0 for all n, and thus ), b, converges.

5. If f(a)f(b) < 0, then it follows that either f(a) < 0 and f(b) > 0, or f(a) > 0 and
f(b) < 0. In either case, zero lies between f(a) and f(b), and thus the intermediate

value theorem can be applied to show that there exists an x € (a,b) such that f(x) =
0.

6. Let f be a real-valued function defined on an interval [0, b] as

| x forx € Q,
f(x)_{O for x ¢ Q.

Consider a partition P = {0 =ty < t; < ... < t, = b}. First note that

m(f, [t t]) =0,  M(f, [l-1, 1)) = &

forall k = 1,...,n. The first expression follows because any interval must contain
an irrational number, whereas the second expression follows because the interval
must take rational values arbitrarily close to t;. Hence

n n

U(f,P) =) (t — i) M(f, i1 1)) = Y (B — b1 b

k=1 k=1

For a general partition this cannot be calculated explicitly, but it will always be
strictly positive, since each term in the sum is strictly positive. The lower Darboux
sum is given by

n

L(f,P) = ) (te — tict)m(f, [te—1, 1)) = 0.

k=1



To show that f is not integrable on [0, b], consider any partition P. Then

™=

U(f,p) =

(te — tre—1)tx

T
—_

b+ b
(te — tk—l)(kz—l)

v
1=

k=1
1 n
= QZ(tk te_1)
k=1
e
2 2

Thus for any partition,
b2
U(f,P) ~L(f,P) > &
and thus f is not integrable on [0, b].

7. Suppose that ) ; f(n) converges, and consider the integral

[ sz

Let k be the largest integer such that k < b. Hence b — k < 1. Consider the partition
P={l=ty<t <...<t_1 <tpy=>b}, wheret;=i+1fori=0,...,k—1. Then

u(f,p) = [ti—1 i) (t; — tj—1)

L
Lt

]1)

k—1
< f(k)+;f(1)
. ]
= Y. f0)
j=1

SO



8.

Since the integral is an increasing function and is bounded above, it follows that it
must converge.

Now suppose that flx f converges, and consider YV, f(n). Consider the partition
P={1=t <t <...<ty—1= N}wheret; =i+1foralli =0,...,N—1.
Then

N-1
L(f,P) = Z%m(f/[tj—lrtj])(tj_tj—l)

=

N-1

= Y m(f,[j,j+1])

—

= ) f(j+1)

~

and hence

N

N 00
Y f0) = F+LUEP) S FO+ [ F<f+ [ f.

=1

Since Z]-I\Ll f(j) is increasing and bounded above, then it converges.

()

(b)

From the definition, it is clear that d(x,y) = 0 if and only if x = y, and that
d(x,y) = d(y,x). To prove the triangle inequality, consider any x,y,z € R. If
x = z, then d(x,z) = 0, and since d(x,y) +d(y,z) > 0, the triangle inequality
is satisfied. If x # z, then d(x,z) = 1. Either y # z or y # x, and hence
d(x,y) +d(y,z) > 1, so the triangle inequality is satisfied. Hence d is a metric.

The neighborhood of radius 1/2 at 0 is
{x eR :d(0,x) <1/2} ={0}.

It only contains zero, since all other points are a distance of 1 away.

Consider an arbitrary set S C R. To show that S is open, consider any x € S.
Then, by the same argument as in (b), Ny,5(x) = {x} C S so x is an interior
point. Since all points are interior, it follows that S is open.

Consider an open cover S of S. Suppose S has finitely many points, so that
S = {s1,82,...,54}. Then there exist sets Sy,...,S, € S such that s; € S; for
k=1,...,n, and it follows that {S; : k =1,...n} is a finite subcover. Hence S
is compact.
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Figure 1: A plot of the neighborhood of radius 1 at (0,0), considered in Problem 9(b).

Suppose S has infinitely many points. Consider the cover § = {{x} : x € S}.
By above, the sets {x} are open. Consider a subcover 7 C S. Forany x € S,
{x} must be T, since x is not an element of any other setin S. Thus 7 = S.
Hence S has no finite subcover and S is not compact.

9. Let x = (x1,x2) and y = (y1,y2) be in R2. Consider the function
d(x,y) = [x1 = y1| + [x2 = yal-

(a) Consider the three properties of a metric:

M1. Note that
d(x,x) = |x1 — x1| + [x2 —x2| =0

and if d(x,y) = 0, then

0= |x1 —y1| + |x2 —y2]

from which it follows that x; = y; and xp = yp,s0x =y.
M2. Forall x,y € R?,

d(x,y) = [x1 =y + [x2 = ya| = |y1 = 21|+ |y2 = x2f = d(y,x),

and thus d is symmetric.



M3. Forallx,y,z € R?,

d(x,y) +d(y,z) = |x1—y1|+|x2—y2|+[y1 —z1] + |y2 — z2]
< |xq —z1| + |x2 — 22
= d(x,z),

where the usual triangle inequality on R has been applied twice. Hence 4
satisfies the triangle inequality.

(b) The neighborhood of radius 1 at (0, 0) is given by
Ni1((0,0)) = {x € R? : d(x,(0,0)) <1} = {x € R? : |x1| + |x2| < 1}

Consider the quadrant where x; > 0 and x, > 0. Then |x1| + |x2]| = x1 + x2,
and thus the boundary of the neighborhood is given by x = 1 — x;. Thisis a
straight line which intercepts the x, axis at 1, and has slope —1. By symmetry;, it
follows that the neighborhood is diamond, with corners at (0,1), (0,1), (0, —1),
and (—1,0). Itis plotted in Fig.

10. Suppose that f is not constant. Then there exists x < y such that f(x) # f(y). For
an arbitrary n € IN consider the points

(y — x)k

th = x —
k n

fork =0,...,n. Then by the triangle inequality,

F) = FWI < Y} 1f(8) = fti)]

VAN
=
—~
—~
Pl
|
—~
T
—_
N—

Since n is arbitrary, there exists an n such that

(y —x)°
n>—~———-
f(x) = fF(W)l
which leads to a contradiction. An alternative approach is to first note that for all
x,y € R
2
— fx —Xx
=10 2P|,y
y—x y—x




11.

12.

Since |y — x| — 0 as y — x, it follows that

’f(}/) —f()
y—x
as y — x, and hence
LW -

y—x y—x
for all x € R. Thus f is differentiable on R and f'(x) = 0 for all x € R. For any
bounded interval I C IR, f must be constant. Hence f is constant on IR.

Suppose that f is differentiable on R, and that 2 < f'(x) < 3forx € R. If f(0) =0,
prove that 2x < f(x) < 3x for all x > 0. Suppose x > 0. By the Mean Value
Theorem, there exists a y € (0, x) such that

x—0

and hence ()
X

Ty =f '(y )-
The constraint on the derivative shows that

2 < M <3

X
and hence
2x < f(x) < 3x. (1)

Since f(0) = 0, it follows that Eq. [l holds for all x > 0.

Suppose that f is integrable on [a,b]. Then for all € > 0, there exists a partition P
such that

U(f,P)—L(f,P) <e.
Consider the partition Q composed of the values 4, c, d, and b; in general this will
have four points, but if c = a or d = b it may have fewer. Define a new partition
T = PUQ. Then since T is a refinement,

U(f,T)— L(f,T) < e.

Write T = {a = tg < t; < ... < t, = b}. There exists i and j such that t; = c and
t; = d. Consider the partition S = {t; < ... < t;} of [c,d]. Then

]
U(F,S) = L) = 3 (M0 ia, ) = m(F eca )
=1+
< VM, e b)) — m(F [t )
=1
— U(f,T) - L(FT)

< €.

B



Since this is true for an arbitrary € > 0, it follows that f is integrable on [c, d].

1/3

13. (a) Suppose that r*/° is rational. Then

for p,q € Z, where g # 0. Hence

and thus 7 is rational. Thus is r is irrational, then r1/3 is irrational also. Simi-
larly, if r + 1 is rational, then

r—|—1:E
q
for p,q € Z, where q # 0, and
}’:E— :—p_q
q q

so r is rational. Thus if r is irrational, then r + 1 is irrational also.
(b) First, consider the number x = 5 + /2. Then

x—5 = V2
(x =5 = 2
x> —10x+25 = 2
x> —10x+23 = 0.
By the rational zeroes theorem, if x is rational, then x = £1 or x = +23. But

x > 5and x < 542 = 7, so none of these possibilities are valid, and thus x is

irrational. By the results of part (a), (5 + +/2)!/3 is irrational, and (5 + v/2)1/3 +
1 is irrational also.

14. For the first limit, L’'Hopital’s rule can be applied once to show that
1 1

X
im ——— =i = .
xliI(l) 1 — e ¥2-3x xl_}]f]% (zx 4 3)€—x2—3x 3

The second limit can first be rewritten as

. 1 1 . x—sinx
lim | — —— ) =lim ————
x—0 \ sinx X x—0 xsinx

after which L'Hopital’s rule can be applied twice to show that

. x-—sinx . 1—cosx . sin x 0
Iim ——— = lim — = lim . =—-=0.
x—=0 Xxsinx x—=0sinx +xcosx x—02coSXx + xsinx 2




For the third limit, L'Hopital’s rule can be applied three times to show that

, x3 , 3x2
Iim — = lim ——
x—0SINX — X x—=0cosx — 1

. 6x
= lim -
x—0 —sinx
. 6
= lim
x—0 — COS X
6
p— —_— —6_
-1

15. Suppose a > 0. Then there exists an N € IN such that 272N < 4. Hence for M > 2N,

sup{s, : n > M} =a

and hence limsups, = a. Now consider any I > 0. Then there exists an N € IN
such that2™" < [ for n > 2N. Hence ! is not a lower bound for the set {s, : n > M}
for any M. However, since 0 is lower bound, it follows that it must be the greatest
lower bound, and hence limsup s, = 0.

Now suppose a < 0. Then inf{s,, : n > M} = aforall M € N, so liminfs, = a.
Also,

2—M-1 if M is odd,
sup{sn : n > M} = { 2~M=2 if M is even.

so limsups, = 0.

If 2 = 0 then limsup s, = liminfs, and hence the series converges with limit zero.
Otherwise, lim sup s, # liminfs, and the series does not converge.

16. Consider any € > 0. Then

1 1

1)~ f0,0)] = |5y
‘f(xl XQ) f( )| x%—i—x%—l—l 1

2, 2
x|+ X3
7, 2

Za2+1

< x4 a3l

Suppose d((x1,x2),(0,0)) < 6 where § = /€. Then

f(x1,22) = £(0,0)] < (d((x1,%2),(0,0)))* < 6* = e.



Now consider the point (0,1):

1 1

x1,x2) — (0,1 = | ——=
|f(1 2) f( )l x%+x%+1 2

X2+ x5 —1
2(x3 + x5 +1)
X7 + 3 — 1]
2
2+ (-1 (x+1)]
2
01 + | — 1] - [xp + 1
J— 2 .
Suppose d((x1,x2),(0,1)) < 1, so that

4 (np-1)2<1.

from which it follows that |x;| < 1 and |xp — 1| < 1. Hence |x; + 1| < |xp| + 1
Define § = min{1,§}. Thend < § and 6§ < /e. Hence |x1| < /e and |xp — 1
Then

< 3.
€
<3

2 —1]- 1 2 +3¢
[f(x1,%2) — f(0,1)] < SRaL 5 AR (\/E)Z S =e

Hence f is continuous at (0,1).

17. (a) For p # 1, the improper integral can be written as

1 1
/ x Pdx = lim x Pdx
0

c—0t+ Je

whereas if p > 1, the exponent is negative, so

1
/ x Pdx = 0.
0



(b) The improper integral can be written as

1 1 d
/ x Pdx=lim [ x Pdx+ lim [ x Fdx.
0 c—0* Je d—oo J1
Since both terms are non-negative, it follows that if one term is oo, then the
integral must co also. By the result above, if p > 1, then the first term is co.
Now suppose p = 1. Then the second term is

d
li “ldx = lim [logx]f
e i T dglgo[ogxh
= lim logd
d—o0
= ©Q.
If 0 < p <1, then second term is
d x—p+174
lim [ x 7Pdx = Ilim [ }
d—oo J1 d—oo | 1 — P14
drtl—1
= lim
d—oo 1 — p
= o0,

) 1
Hence in all cases, [, x Pdx = oo.

18. Since f is integrable on [4, b], it is bounded, so there exists a B > 0 such that f(x) < B
for all x € [a,b]. Assume that if f is integrable on [a, b] then it is integrable on any
interval [c,d] C [a, b]; for full details see Problem [12]

To show the above limit, consider any € > 0, and examine ¢ € (b — ¢,b) where

5 = e/B. Then
fr=L =11

b
< /le|
< (b—0)B
< 6B =e.

Hence

lim /adf(x) dx = /abf(x)dx.

d—b—

19. If A = 0, then s, = 0 for all n, so s, is a constant convergent sequence. Similarly if
A =1, thens, = 1forall n, so s, is also constant and convergent. In general,

n—1
Sy = A2



20.

21.

IfO < A < 1, thensince 0 < A2 < A for n € N and A" — 0 as n — oo it follows
thats, — 0. If A > 1, then since A2° > A" forn € N and A" — coas n — oo, it
follows that s,, — 0.

Finally, suppose A < 0. Then for n > 2, the resulting sequence (s, ) will be the same
as the case for —A, and will therefore have the same convergence properties. Hence
(sn) converges if and only if [A| < 1.

The minimum element of [0, /2] is 0, and since this is also in A it follows that
min A = 0. The maximum element of [0,+/2] is v/2, but this is not in A. Since
there are rational numbers arbitrarily close to V2, it follows that A does not have a
maximum. The infimum is just inf A = min A = 0. V2 is an upper bound for A.
For any € > 0, there exist elements in A which are greater than V2 — €, and thus v/2
is the least upper bound. Hence sup A = /2.

For B, note that
24tx—1= (x—i—1/2)2—5/4.

Since the first term can take any positive value, it follows that B = [—5/4, c0). Hence
min B = inf B = —5/4, the maximum does not exist, and sup B = co.

By completing the square, above equation can be written as

4x—1= <x+1_\/5> <x+1+\/g>.

2 2

The quadratic will be strictly negative when one of these two factors is strictly neg-
ative and the other is strictly positive. Hence C = (—1/2 — v5/2, —1/2 + v5/2), so the
minimum and maximum do not exist, inf C = —1/2 — v5/2and sup C = —1/2 + V5/2.

(a) Suppose 0 < x < 1. Then

. ey
lim fy(x) = lim (x —x") = x

since if |x| < 1, then x" — 0 as n — o0. For x =1,

lim f,(x) = lim (1 —1") =0.

n—o00 n—oo

Hence f,, converges pointwise to a limit f on [0, 1] given by

X fo<x<l1,
f(x)_{o if x = 1.

Graphs of several of the f, and the limit f are shown in Fig.
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Figure 2: Graph for Problem 21, on pointwise and uniform convergence.



(b)

(d)

As can be seen from Fig. 2, the convergence does not appear to be uniform on
[0,1], since it does not appear that the f, will ever lie within a strip of a fixed
width € around f. To see this mathematically, for a given n, consider the point
x = (1/2)1/". Then

[fu(x) = f(X)] =[x —x" -

|x"|

1/2

Hence if € = 1/2, there does not exist an N such that n > N implies that | f,,(x) —
f(x)] < eforall x € [0,1].

Consider the interval [0, 1/2]. Then for any x in this interval

[fu(x) = ()] = ¥ < 277
Consider any € > 0. Then there exists an N such that n > N implies 27" < ¢,
and thus |f,(x) — f(x)| < e. Hence f;, — f uniformly on [0, 1/2].

Since continuous functions are integrable, it follows immediately that f; is in-
tegrable for all n € IN. For a specific n,

/Olfn = /Ol(x—x”)dx

2 a1l
a {?_”Jrl]o
1 1
2 n+1
n—1
2(n+1)

To show that f is integrable, consider the function

(x) = 0 fo<x<1,
W =131 ifx=1.

Choose any € > 0, and examine the partition P = {0 = t) < t; < t, = 1}
where t; =1 —¢/2. Then

2 2

L(f,P) = ) (t —ti)m(f, [te1, 1)) = ) 0=0

k=1 k=1
and

2

u(f,p) = kZ(tk — b)) M(f, [tk tk]) = (1 —t0) - 0+ (2 — t1)1 = g
-1
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Figure 3: Graph for Problem 22, on the second Fundamental Theorem of Calculus.

Thus U(f,P) — L(f,P) < e. Since a partition such as this can be constructed

for an arbitrary € > 0, it follows that g is integrable and fol g = 0. Since
f(x) = x — g(x) and both x and g are integrable, it follows that f is integrable

and folf = fol x— fol ¢ = 1/2. Note that

nh—I>I°1°/ f”_n—moz(n-i—l /f

:/Oxf:/oxldt:x.

22. (a) If 0 < x <1, then

If1 < x <2, then

If x > 2, then



For negative values of x, note that f is an even function, and thus

o) = [ fat= [ f(=9)(~ds) == [ fs)ds = ~F(x)

so F is odd. Hence

1 if x < =2,

-3 —2x if 2<x<1,
F(x) =< «x if —1<x<1,

3 —2x ifl<x<2,

-1 if x > 2.

(b) The functions f and F are plotted in Fig.

(c) By the second Fundamental Theorem of Calculus, if f is continuous at x, and

23. (a)

then F is differentiable at x and F/(x) = f(x). Thus the only points where F
may not be defined are x = £1, £2. Since

x—1- x—1 x—1-x—1
but r
i ) -FQ) o 83-2-1
x—1+ x—1 x—=1- x—1
so F is not differentiable at 1. Similarly
lim F(x) — F(2) _ lim 3—2x—(-1) _q
x—2- x—2 x—2- x—2
but . o
x—27+ x—2 X2+ X — 2

so F is not differentiable at 2. Since F is odd, it follows that F is not differen-
tiable at —1 and —2 also. Hence F’ is defined on R/{—2,—1,1,2} and

0 if x < =2,
-2 if-2<x<1,

F(x)=«¢ 1 if-1<x<1,
-2 ifl <x<?2,
0 if x > 2.

Let f and g be continuous functions on (4, b] such that [ ab f=/ ab g. Prove that
there exists an x € [a,b] such that f(x) = g(x). If fabf = fab g, then if h(x) =



24.

(b)

(a)

f(x) — g(x), then fabh = 0. Consider the partition P = {a = ty < t; = b}.
Then

_ /bh < U(h,P) = (b—a)M(h, [a,b])

and

0= /bh > L(h,P) = (b— a)m(h, [a,b]).

Since a continuous function on a closed interval achieves its bounds, there exist
x1 and x, such that 1(x1) = M(h, [a,b]) and h(xy) = m(h, [a, b]). Either h(x1) =
0 or h(xy) = 0, or otherwise h(x;) > 0 and h(x;) < 0. In the latter case,
the intermediate value theorem can be applied to show that there exists an x3
between x; and x; such that /i(x3) = 0. In all cases there exists an x such that
h(x) = 0 and hence f(x) = g(x).

On the interval [—1, 1], define

f(x):{ -1 ifx <0,

1 ifx>0,

and let g(x) = —f(x). By construction f(x) # g(x) for all x € [—1,1]. To find
the integral of f, choose € > 0 and consider the partition P = {a = -1 < f; <
ty < t3 = 1} where t; = —¢/5and t, = ¢/5. Then

3
L(f,P) = Y (tx—tie1)m(f, [te—1,t])

k=1

- (-9 2 (-9

_2¢
=
Similarly
3
= Y (e — i) M(f, [te—1, ti])

k=1

= (-9 v 5P (-9
2e

5

Then U(f,P) — L(f, P) = 4¢/5 < €, and since € is arbitrary it follows that f is
integrable, and that f_llf = 0. In addition, so filg = f_ll(—f) =— filf =

Thus f}lf = filgbut f(x) # g(x) forall x € [—1,1].
The functions hy, hy, and h3 are plotted in Fig.[4]
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Figure 4: Graphs of several functions /1, (x) used in Problem 24 on integration limits.



(b)

()

(d)

Consider any x # 0, and € > 0. Then there exists an N € IN such that 1/N <
2|x|. Thenif n > N, h,(x) = 0. Hence limy, 0 1, (x) = 0. Atx =0,

hy(x) =n

which tends to o0 as 1 — 0.

Consider any € > 0. Then since f is continuous, there exists a § > 0 such that
|x| < J implies |f(x) — f(0)| < ¢/2. Then there exists an N such that 1/2N < 4.
By using the definition of an improper integral,

a——oo

0 1/2n
AT A
1/2n
- /—1/2n f
By using the bound on f due to continuity,

[ UO=5)drs [mr<n [ (r0)+5)an

00 0 b
(/' haf = lim hnf-klnn(/'hnf
—00 a b—o0 JO

SO
FO) -5 < [ mf<FO+5
Hence -
10— [t <5 <
SO -
tim [ s = £(0).
Consider

(o0 ifx <0,
gx) =191 if x > 0.

Then for any n € IN,

o , 1/2n 0 1/2n 1
L "8 /—1/2n § /—1/2n 0 2

lim hng = %

n—oo J_

and hence

which does not equal g(0) = 1.



Figure 5: A graph of the function f and a Taylor series approximation fr at x = 1, dis-
cussed in Problem 25.



25. (a) Forx >0,
1

and since 1/x — 0 as x — oo, it follows that f(x) — 0 as x — oco. On the
interval under consideration0 < x <1+ x,s00 < f(x) < 1.

(b) The function f is shown in Fig.

f(x)

(c) Since )
) =1-—,
it follows that the derivatives are
fi(x) = (le)2
and )
f(x) = —m-

Hence f(1) =1/2, f/(1) = 1/4, f’(1) = —1/4 and thus

2 _ 1\n£(n)
fT(x) — Z(x 1)n'f (1)
n=0 :
= FO M-+ PSS

1, x—1 (x—1)

- 27 8
(d) fr canrewritten as
fr(x) = 1+x_1_x2+x_1
T 274 4 8 s
_ 1_|_x_x2
8 2 8

which is a quadratic.

(e) The function fr is shown in Fig.[5l By construction, the curves intersect at
x = 1, and have the same slope and curvature there.

26. For the first series,

(n+1)2+1 7

B = limsup |a,|'/" = lim sup = limsup

n



27.

so the radius of convergence is R = 1. At x = —1, the series is
i (—=1)"
n=0V 1’12 + 1
which converges by the alternating series theorem. At x = 1, the series is
i 1
n=0V n? +1 .

Since vVn2+1 < vn2+2n+1=n+1land1/(n+1) diverges, it follows that the
series diverges at x = 1. Hence the exact interval of convergence is [—1,1).

For the second series, by looking at the limit of positive coefficients,

= lim (=2)"

n—oo | m2

1/2n

= lim (V2)n'/" = V2,

B = limsup |a,|/" = lim |aza| /2"

and thus the radius of convergence is R = 271/2, At x = R, the series is

21 (—12)"

n

which converges by the alternating series theorem. Since the series is even, the sum
converges at x = —R also. Hence the interval of convergence is [-271/2,271/2].
If a sequence a, converges to a limit a4, then for all € > 0, there exists N € IN such
that n > N implies that |a, — a| < €.
Consider any € > 0. Since s, — s, there exists an Nj such that n > Nj implies that
€
|sn —s| < 1

and since t,, — t, there exists an N, such that n > N, implies that
€
’tn - t’ < Z.

Define N = max{Ny, N, }. Then for n > N,

|(Bsy +ty) —3s—t| < 3Bls, —s|+ [ty — ]
< 3—6-1-5—6
4 4

and thus 3s,, +t, — 3s+tasn — oo.



28.

29.

(a) By making use of the definition,

» (1+V5)? 6+2V5 1++5
4 i M3

=14 ¢.
(b) First consider the induction hypothesis Hj:

9" —(1-9)° _o—(1—9) 2¢-1_
f(O)——ﬁ =0, f(1)= Ve —\/5_1.

Now consider the induction step. Suppose H, is true, and consider H,,; 1. Then
F, = f(n) and

¢"—(1-9¢)"+¢" - (1—9g)"!
V5
+(1-9)

Fn+1 = E+F 1=

" M14+9)—(1—9)" (1
V5

Since (1—¢)2=1-20+¢*=1—-290+ (1+ ¢) =2 — g, it follows that
% pT@ P % ¢

Pn+1 _ gDn—H _ (\}5_ (P)n+1 _ f(n N 1)

so H, 1 is true. Hence by mathematical induction H, is true for all n, so F,;, =
f(n) foralln € N U {0}.

(c) By using the explicit formula for F,,

B ﬂ n+1 1
Fn+1 _ §0”+1 _ (1 o qo)n—i—l 1 < 7 ) (0

Fy g —1—gr 7 - (5)

Since |@| > 1and |1 — ¢| = @ < 1, then

By 120
Jim, r, 10" 7

(@) Define & = sup S. Since « is an upper bound for S, then « > s forall s € S.

Hence f(a) > f(s) foralls € S,so f(a) > tforallt € T, so f(«) is an upper
bound for T.
Since f is a continuous strictly increasing function there is an inverse f ~*. Sup-
pose B < f(a) is an upper bound for T. Then f~!(B) < &, and since « is the
supremum of S, there exists an s € S such thats > f~!(B). But then f(s) > B,
so there exists a t € T such that t+ > B which is a contradiction. Hence f(a) is
the least upper bound, so sup B = f(sup A).



(b) This follows from the result in part (a) and the fact that f is continuous:
limsupb, = I\lliir;o(sup{bn :n >N}
lim (sup{f(a,) : n > N})
N—co
= lim f(sup{a, : n > N})
N—oo

= li :
f (Nlir})osup{an n> N})
= f(limsupay).
(c) LetS = (—1,0) and
| x if x <0,
f(x)_{x—i—l if x > 0.
Thensup S =0,so f(supS) = 1. However, T = (—1,0) and sup T = 0 # 1.
30. (a) 4((0,1),(0,0)) = min{0,2} = 0, which violates the property that d(x,y) = 0 if
and only if x = y.
(b) Consider the three properties of a metric:
MI1. Note thatd(x,x) = max{0,0} = 0. Ifd(x,y) = 0, then max{|x; — y1|,2|xz —
Y2/} = 0so |x; —y1| = 0and |x; —y2| = 0, and x; = y; and xp = ¥p, SO
X =y.

M2. d(x,y) = max{[x1 — y1|,2[x2 —y2|} = max{|y1 — x1],2|y2 — x2|} = d(y,x).
M3. Forany x,y,z € R,

d(x,y) +d(y, z) max{ |x; — y1/,2]x2 — y2|} + max{|y1 — z1|,2|y2 — 22|}
max{|x; —y1| + [y1 — z1], 2|x2 — y2| +2|y2 — 22|}

max{|x; — z1],2|xp — zp|}

AVARAVARN|

where on the final line, the usual triangle inequality has been applied.
Hence dp is a metric. The neighborhood of radius 1 at (0,0) is shown in Fig. [6|

(c) By the given continuity property, for all x € X, and all € > 0, there exists a
0 > 0such thatd(y, x) < ¢ implies de(f(x), f(y)) < €/2, so that

V) = f)2+ (f() — f2)2 < 2
and hence [f(x1) — f(y1)| < <¢/2and [f(x2) — f(y2)| < ¢/2. Then

dp(£(x), f(y)) = max{|f(x1) = Fly)|.21f (x2) = )|} < 25 =e.

Hence f is continuous with respect to (X, d) and (IR?,d3) also.
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Figure 6: Graph of the neighborhood of radius 1 at (0, 0) with respect to dp.

31. (a) Forx € [0,1], F(x) = [; 0 =0. Forx > 1,

X
x2—1

F(x):/le(t)dt: EL -

(b) By the second Fundamental Theorem of Calculus, if f is continuous at a given
x, then F is differentiable at x and F’(x) = f(x). Hence the only value to check
is x = 1 where f is not continuous:

_ 2 _
y=1t Yy —1 =12y —1)  yorr 2
and . 1
L F@) - F)

y—1- y— 1

so F is not differentiable at 1. Hence F’ exists on [0,1) U (1, o0), and

! 0 if0<x<1,
F(x)_{x if x > 1.
(c) Sincelim,_,1 f(x) = lim,_,; x = 1, but f(1) = 0, f is not continuous, and hence
it is not uniformly continuous. To show that F is not uniformly continuous,
consider € = 1/2, and fora é > 0, put # = min{J, 1}, and examine x = 17’1 and



Figure 7: Graph of the functions considered in question 7 on Taylor series.

y =n"1+1/2 Then |x — y| < 6, but

2
2-1-4]

-2
) — fly) = >

Since an x and y with this property can be found for any 6 > 0, it follows that
F is not uniformly continuous.

N[~

32. (a) The functions are plotted in Fig.[7}

(b) Since
_ 2(1 —
lim M: lim M: lim x(1—x) =0,
x—0t X — x—0t X x—0t
and )
lim S =80 A=D1 =0,
x—0-  x—0 x—0- b x—0~

so the two limits agree then g is differentiable at x = 0. However

lim §®) —&) _

x—1+ x—1 x—1+ x—1 x—1t



and

— 201 —
lim —g(x) 3(1) = lim (1 — )| = lim —x*> = -1,
x—1- x—1 x—1- x—1 x—1-
so g is not differentiable at x = 1.
(c) Forx > 1, g(x) = —f(x) = x® — x2, and the derivatives are ¢’(x) = 3x> — 2x,

¢"(x) =6x—2,¢"(x) = 6,and g (x) = 0 for n > 4. Hence, the Taylor series
of gatx =2is

g0 = s@+g@-2)+ 8P @224 £ op

4+8(x —2) +5(x —2)% + (x —2)°
448x—16+5x2—20x+20+ x> —6x> +12x — 8

x3—x2

which is equal to — f(x) for all x.

33. (a) The functions are plotted in Fig.

(b) Since f,(0) = 0 for all n, then lim,_,« f4(0) = 0. Consider any x > 0. Then
there exists an n € IN such that Nx > 1. But then for all n > N, f,(x) =
ng(nx) = 0, so lim, . fu(x) = 0. Hence f, converges pointwise to f, where
f(x) =0forallx € [0,1].

(c) Forany n € NN,

Fu1/m) = F(/m) = |n—0] = > 1.
Hence there does not exist any N € IN such that n > N implies that | f,(x) —
f(x)] < 1forall x € [0,1]. Hence f, does not converge uniformly to f.

(d) The integrals are
1/n

1 1/n x2 1
2 2

= d = —_— == —.

lA Ju lA e [“ 210 2

Since f is identically zero, fol f = 0. Hence the integrals of f, do not converge
to f.

34. (a) Consider any € > 0. Since f’(x) — 0 as x — oo, there exists an M > 0 such that
forx > M, |f'(x) — 0| < e. Consider any x > M. By the Mean Value Theorem,
there exists a y € (x,x 4 1) such that

fla+1) —fx) _ 4
1o W

Since y > M it follows that

) =1f(x+1) = fx)| =1f W) <e.

Hence g(x) — 0 as x — oo.
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Figure 8: Graph of the functions considered in question 8 on pointwise and uniform con-
vergence.



(b) Foralln € N
p(=3)<0, pO)=1, p(l)=-2, p(2)>0.

The Intermediate Value Theorem can be applied to the intervals (—3,0), (0,1),
and (1,2) to show that p has at least three roots.

By the rational zeroes theorem, any rational solution must have the form x =
+1. However, since p(1) = —2, and p(—1) = 4, it follows that the roots must
be irrational.

35. (a) By applying L'Hopital’s rule once,

. 1
lim lim —.
x—0eX¥ —e ™  xs0eX¥ e X 2

By applying L'Hopital’s rule twice,

2y 2 cos x sin x 2cos?x —2sin®x

. sin . ]
lim > = lim ———— = lim =
x—=0 X x—0 2x x—0 2

(b) L'Hopital’s rule can be applied to show that
—h) — / Ay
L fOE ) f- ) = 2f(0) L fk )~ fi e h)

h—0 h? h—0 2h
o ) = f
h—0 2h
o P = f
h—0 2h
_ f (x)‘;f (x) :f”(x)-

(c) Consider the function

1 if0<x<1,
f(x)=4¢0 ifx=0,
-1 if —1<x<0,

defined on (—1,1). This is discontinous at 0, and thus it is not twice differen-
tiable there.

. fx+h)+flx—h)=2f(x) .. 1+(-1)-0_ . 0
e 2 = lim 2 o0 2

Any odd function that is not twice differentiable will give the same result.



36.

(a) Consider any € > 0. Then there exists an N such that |fy(x) — f(x)] < 757

3(b—a)
for all x € [a,b]. Since fy is integrable, there exists a partition P = {a = tp <
t1 < ... <ty = b} such that U(fn,P) — L(fn, P) < ¢/3. Note that for any
interval [f;_1,ty],

M(f’ [tkfl/ tk]) S M (fN + ﬁl [tkflr tk])

= M(fn, [te-1 t]) + 3(176— a)

and hence

n

U(f,P) = Y M(f [ti—1, te]) (b — te1)

A
]

(M o) + 557 ) (1)

=1
— Y M e ) 0~ ) + Y Sy
k=1 P
B e(ty —to)
= U(fn,P)+ 3(b——a(;
= U(fy,P)+ g
By similar logic, L(f, P) > L(fn, P) —¢€/3, so
U(f, P) ~ L(f, P) < Ulfu, P) ~ L{fn, P) + = < e

Since this is true for arbitrary € > 0, it follows that f is integrable, and since the
upper and lower sums of f approach the upper and lower sum of the fy, then

b b
faf”:faf'
(b) Write u = logx and dv = 1. Thenv = x and u = 1/x, so
! 1 logl 1 log2 1
_ 1 _ &2 _ log
A/Zlogxdx—[xlogx]l/z— 1/2dx—— T3, T

(c) Since power series converge uniformly on any open interval (—c, c) where c is

smaller than the radius of convergence, then the result from part (a) shows that



the sum and integral can be switched, so that

1 0 © 0 (1)t
/1/210gxdx:/_1/210g(1+x)dx = ’;/1/27
o [yt (1)t 0

N nz::l[ (n+1)n }1/2
g
= 2rtin(n41)

Using part (b),

1 & 1 e 1
log2=2(-Y -+ J=1-y -~
8 (2 ngznﬂn(nﬂ)) ngznﬂn(nﬂ)



