
Math 104: Midterm 2 sample solutions

1. To show that f is uniformly continuous, choose ϵ > 0. Since fn → f uniformly,
there exists an N such that n > N implies that

| fn(x)− f (x)| < ϵ

3

for all x ∈ (a, b). Now consider fN+1: since this is uniformly continuous, there exists
a δ > 0 such that if x, y ∈ (a, b) and |x − y| < δ, then

| fN+1(x)− fN+1(y)| <
ϵ

3
.

Now, for any x, y ∈ (a, b) with |x − y| < δ,

| f (x)− f (y)| ≤ | f (x)− fN+1(x)|+ | fN+1(x)− fN+1(y)|+ | fN+1(y)− f (y)|
<

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

and hence f is uniformly continuous.

2. For three values 0, 1, and 2,

d1(0, 1) + d1(1, 2) = 14 + 14 = 2

but
d1(0, 2) = 24 = 16

and hence the triangle inequality is violated, so d1 is not a metric.

Since d2(0, 0) = 1, it does not satisfy the property that d(x, x) = 0 for all x ∈ R, and
hence d2 is not a metric. Since d3(0, 1) = 2, and d3(1, 0) = 1 it is not symmetric, and
hence it is not a metric.

3. First, consider the series
∞

∑
n=0

xn

n
√

n

so that the coefficients are an = n−
√

n. Then

β = lim sup |an|1/n

= lim sup |n−
√

n|1/n

= lim sup n−1/
√

n.

Since the power will always be negative, all of the terms in this sequence must be
less than or equal to 1, so β ≤ 1. Consider the subsequence of terms for n = 2k.
Then

n−1/
√

n = 2−k/2k/2
.



It is known that k/2k/2 → 0 as k → ∞. Hence 2−k/2−k → 1 as k → ∞. Hence, since
the subsequence tends to 1 as n → ∞, then β ≥ 1. Combining with the result above,
β = 1, and the radius convergence is R = 1.

For the second series
∞

∑
n=0

4n x2n+1

then

an =

{
2n−1 if n is odd
0 if n is even.

Consider the subsequence of odd terms:

|a2k+1|1/(2k+1) = |22k+1−1|1/(2k+1) = 22k/(2k+1)

which converges to 2 as k → ∞. Hence

β = lim sup |an|1/n = 2

and therefore the radius of convergence is R = 1/2.

For the third series,
∞

∑
n=0

xn2
,

the coefficients are an = 1 if n is a square number and zero otherwise. Hence

|an|1/n =

{
1 if n is a square number
0 otherwise.

Hence
β = lim sup |an|1/n = 1

since there are infinitely many terms which are 1 in the sequence. Hence the radius
of convergence is R = 1.

4. If g is bounded on S, then there exists an M > 0 such that |g(x)| < M for all x ∈ S.
Now consider any ϵ > 0. If fn converges uniformly to f , then there exists an N such
that n > N implies that

| fn(x)− f (x)| < ϵ

M
for all x ∈ S. Now consider g · fn:

|g(x) fn(x)− g(x) f (x)| = |g(x)| · | fn(x)− f (x)| < M
ϵ

M
= ϵ

and hence it uniformly converges to g · f .



5. If fn converges uniformly to f , then there exists an N such that n > N implies that

| fn(x)− f (x)| < 1

for all x ∈ S. By using the triangle inequality,

| f (x)| < | fN+1(x)|+ 1.

Since fN+1 is bounded, | fN+1(x)| < M for all x and for some M ≥ 0, and thus
| f (x)| < M + 1 for all x. Hence f is bounded.

6. Since a continuous function on a closed interval is bounded, then for each fn, there
exists Mn such that | fn(x)| < Mn for all x ∈ [0, 1]. Since fn converges uniformly to
f , there exists an N ∈ N such that for all n > N,

| fn(x)− f (x)| ≤ 1

Since the fn converge uniformly and are continuous, the limit f is continuous also,
and therefore bounded, so that | f (x)| < M′ for all x ∈ [0, 1], for some M′ > 0. By
using the triangle inequality,

| fn(x)| < | f (x)|+ 1 < M′ + 1

for all n > N. Now define

L = max{M1, M2, . . . , MN, M′ + 1}

Consider any x ∈ [0, 1] and any n ∈ N. If n ≤ N, then | fn(x)| < Mn ≤ L. If n > N,
then | fn(x)| < M′ + 1 ≤ L. Thus L is an upper bound for the set A = {| fn(x)| : n ∈
N, x ∈ [0, 1]}. Hence 0 ≤ sup A ≤ L, and thus sup A must be finite.

7. (a) To show that d is a metric, consider the three properties:
M1. d(x, x) = min{0, 1} = 0. For any x, y ∈ R, d(x, y) = 0 implies that |x −

y| = 0, and hence x = y. Hence the function is zero if and only if x = y.
M2. d(x, y) = min{|x − y|, 1} = min{|y − x|, 1} = d(y, x). Hence the function

is symmetric.
M3. Consider any x, y, z ∈ R. Then

d(x, y) + d(y, z) = min{|x − y|, 1}+ min{|y − z|, 1}.

If either |x − y| ≥ 1 or |y − z| ≥ 1, then one of the terms on the right hand
side evaluates to 1. Since both terms are positive, then d(x, y) + d(y, z) ≥ 1.
However, d(x, z) ≤ 1, and thus d(x, z) ≤ d(x, y) + d(y, z) so the triangle
inequality holds.
Suppose |x − y| < 1 and |y − z| < 1. Then, by making use of the usual
triangle inequality in R,

d(x, y)+ d(y, z) = |x− y|+ |y− z| ≤ |(x− y)+ (y− z)| = |x− z| ≥ d(x, z).

Hence d satisfies the triangle inequality.



Hence d is a metric.

(b) Consider any point x ∈ (−5, 5), and define r = min{1/2 , 5− |x|}. Since |x| < 5,
then r > 0. Since r < 1, then Nr(x) = (x − r, x + r). Hence

x + r ≤ x + 5 − |x| ≤ 5

and
x − r ≥ x − 5 + |x| ≥ −5.

Hence Nr(x) ⊆ (−5, 5) so x is an interior point. Since this is true for any
x ∈ (−5, 5), it follows that (−5, 5) is open.

8. (a) For f1,

β = lim sup |n−2|1/n

= lim sup
1

n2/n = 1

Hence the radius of convergence is R = 1.
For f2, since some terms are zero, the radius of convergence can be evaluated
by computing the limit of the non-zero terms:

β = lim sup |an|1/n

= lim
k→∞

|a2k|1/2k

= lim
k→∞

|2−k|1/2k

= lim
k→∞

2−1/2

=
1√
2

.

Hence R =
√

2.

(b) Define x = y/(1 + y2). Then f3(y) = f1(x). If |y| ≤ 1, then |y| < 1 + y2, and
hence |x| < 1. If |y| > 1, then |y| < y2 and so |y| < 1 + y2, so |x| < 1 also.
Hence for all y ∈ R, |x| < 1, and since f1(x) converges for x in this range, f3(y)
must converge also.
This question can also be answered using the Weierstraß M-test, by showing
that the nth term in the series is bounded by 1/n2, and ∑ |1/n2| converges.

9. (a) For 0 ≤ x ≤ 1,

g(x) = x(1 − x) = x − x2 =
1
4
−

(
x − 1

2

)2

.

Thus the maximum value is 1/4, which is attained for x = 1/2.
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Figure 1: A graph of several of the functions ( fn) for question 3.



(b) The functions are plotted in Fig. 1. A function fn looks like the function g, but
scaled horizontally by a factor of 1/n. It is important to note that fn does not
become negative, e.g.

f2(3/4) = g(2 × 3/4) = g(3/2) = 0.

(c) Since fn(0) = 0 for all n, then fn(0) → 0. Now choose any x ∈ (0, 1]. Then by
the Archimedean property, exists an N such that 1/N < x. Then for any n > N,
fn(x) = g(nx) = 0, since nx > 1. Hence for any ϵ > 0, then | fn(x)− 0| < ϵ for
n > N, so fn(x) → 0. Hence fn converges pointwise to the function f (x) = 0.

(d) If fn converges uniformly, then there exists an N such that n > N implies that
| fn(x)− f (x)| < 1/4 for all x ∈ [0, 1]. However, for any n, if x = 1/(2n), then

| fn(x)− f (x)| = |g
( n

2n

)
− 0| = |g(1/2)| = 1/4.

Hence fn does not converge uniformly to f .

10. To show that fn(xn) converges to f (x), consider any ϵ > 0. Since the fn are contin-
uous and converge uniformly to f , then f must be continuous also. Furthermore,
since the interval is closed the limit point x must be within [a, b]. Hence, since f is
continuous at x, then f (xn) → f (x) and hence there exists N1 ∈ N such that n > N1
implies

| f (xn)− f (x)| < ϵ

2
.

In addition, since fn converges uniformly to f , then there exists an N2 ∈ N such
that n > N2 implies

| fn(y)− f (y)| < ϵ

2
for all y ∈ [a, b]. Hence if N = max{N1, N2}, then

| fn(xn)− f (x)| ≤ | fn(xn)− f (xn)|+ | f (xn)− f (x)| < ϵ

2
+

ϵ

2
= ϵ.

Therefore limn→∞ fn(xn) = f (x).


